Spaces:
Sleeping
Sleeping
import numpy as np | |
import torch | |
import torchvision.transforms as T | |
from PIL import Image | |
from torchvision.transforms.functional import InterpolationMode | |
from transformers import AutoModel, AutoTokenizer | |
import matplotlib.pyplot as plt | |
import random | |
import streamlit as st | |
import requests | |
from io import BytesIO | |
import os | |
IMAGENET_MEAN = (0.485, 0.456, 0.406) | |
IMAGENET_STD = (0.229, 0.224, 0.225) | |
def build_transform(input_size): | |
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD | |
transform = T.Compose([ | |
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), | |
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), | |
T.ToTensor(), | |
T.Normalize(mean=MEAN, std=STD) | |
]) | |
return transform | |
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): | |
best_ratio_diff = float('inf') | |
best_ratio = (1, 1) | |
area = width * height | |
for ratio in target_ratios: | |
target_aspect_ratio = ratio[0] / ratio[1] | |
ratio_diff = abs(aspect_ratio - target_aspect_ratio) | |
if ratio_diff < best_ratio_diff: | |
best_ratio_diff = ratio_diff | |
best_ratio = ratio | |
elif ratio_diff == best_ratio_diff: | |
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: | |
best_ratio = ratio | |
return best_ratio | |
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): | |
orig_width, orig_height = image.size | |
aspect_ratio = orig_width / orig_height | |
# calculate the existing image aspect ratio | |
target_ratios = set( | |
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if | |
i * j <= max_num and i * j >= min_num) | |
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) | |
# find the closest aspect ratio to the target | |
target_aspect_ratio = find_closest_aspect_ratio( | |
aspect_ratio, target_ratios, orig_width, orig_height, image_size) | |
# calculate the target width and height | |
target_width = image_size * target_aspect_ratio[0] | |
target_height = image_size * target_aspect_ratio[1] | |
blocks = target_aspect_ratio[0] * target_aspect_ratio[1] | |
# resize the image | |
resized_img = image.resize((target_width, target_height)) | |
processed_images = [] | |
for i in range(blocks): | |
box = ( | |
(i % (target_width // image_size)) * image_size, | |
(i // (target_width // image_size)) * image_size, | |
((i % (target_width // image_size)) + 1) * image_size, | |
((i // (target_width // image_size)) + 1) * image_size | |
) | |
# split the image | |
split_img = resized_img.crop(box) | |
processed_images.append(split_img) | |
assert len(processed_images) == blocks | |
if use_thumbnail and len(processed_images) != 1: | |
thumbnail_img = image.resize((image_size, image_size)) | |
processed_images.append(thumbnail_img) | |
return processed_images | |
def load_image(image_file, input_size=448, max_num=12): | |
image = Image.open(image_file).convert('RGB') | |
transform = build_transform(input_size=input_size) | |
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) | |
pixel_values = [transform(image) for image in images] | |
pixel_values = torch.stack(pixel_values) | |
return pixel_values | |
def prediction(model, image_file, question): | |
question = f"<image>\n{question}" | |
# set the max number of tiles in `max_num` | |
pixel_values = load_image(image_file, max_num=12).to(torch.bfloat16) | |
generation_config = dict(max_new_tokens=1024, do_sample=False) | |
response = model.chat(tokenizer, pixel_values, question, generation_config) | |
return response | |
# If you want to load a model using multiple GPUs, please refer to the `Multiple GPUs` section. | |
path = 'Ramji/slake_vqa_internvl_demo' | |
intern_model = AutoModel.from_pretrained( | |
path, | |
torch_dtype=torch.bfloat16, | |
low_cpu_mem_usage=True, | |
use_flash_attn=False, | |
trust_remote_code=True).eval() | |
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False) | |
# Title of the Streamlit app | |
st.title("Image VQA") | |
# Step 1: Upload an image | |
st.header("Upload an Image") | |
uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"]) | |
# Step 2: Input a question | |
st.header("Ask a Question") | |
question = st.text_input("Type your question here:") | |
# Step 3: Handle the uploaded image by saving it and reading its path | |
if uploaded_image is not None: | |
# Save the uploaded image to a file | |
image_path = os.path.join("uploaded_images", uploaded_image.name) | |
# Make sure the directory exists | |
os.makedirs("uploaded_images", exist_ok=True) | |
# Write the image to a file | |
with open(image_path, "wb") as f: | |
f.write(uploaded_image.getbuffer()) | |
# Read the image from the saved file path | |
image = Image.open(image_path) | |
# Display the uploaded image | |
st.image(image, caption="Uploaded Image", use_column_width=True) | |
st.write(f"Image saved at: {image_path}") | |
# Step 4: Display the typed question | |
if question: | |
st.write(f"Your question: **{question}**") | |
# Optional: Process the image and question for a VLM (like CLIP or BLIP) | |
if uploaded_image and question: | |
st.write("Processing the image and question...") | |
output = prediction(intern_model, image_path, question) | |
st.write("Model output: This is where the answer will appear.") | |