Ramji's picture
created app
a5c4244 verified
raw
history blame
5.52 kB
import numpy as np
import torch
import torchvision.transforms as T
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer
import matplotlib.pyplot as plt
import random
import streamlit as st
import requests
from io import BytesIO
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def load_image(image_file, input_size=448, max_num=12):
image = Image.open(image_file).convert('RGB')
transform = build_transform(input_size=input_size)
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values
def prediction(model, image_file, question):
question = f"<image>\n{question}"
# set the max number of tiles in `max_num`
pixel_values = load_image(image_file, max_num=12).to(torch.bfloat16).cuda()
generation_config = dict(max_new_tokens=1024, do_sample=False)
response = model.chat(tokenizer, pixel_values, question, generation_config)
return response
# If you want to load a model using multiple GPUs, please refer to the `Multiple GPUs` section.
path = 'Ramji/slake_vqa_internvl_demo'
intern_model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
use_flash_attn=False,
trust_remote_code=True).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
# Title of the Streamlit app
st.title("Image VQA")
# Step 1: Upload an image
st.header("Upload an Image")
uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"])
# Step 2: Input a question
st.header("Ask a Question")
question = st.text_input("Type your question here:")
# Step 3: Handle the uploaded image by saving it and reading its path
if uploaded_image is not None:
# Save the uploaded image to a file
image_path = os.path.join("uploaded_images", uploaded_image.name)
# Make sure the directory exists
os.makedirs("uploaded_images", exist_ok=True)
# Write the image to a file
with open(image_path, "wb") as f:
f.write(uploaded_image.getbuffer())
# Read the image from the saved file path
image = Image.open(image_path)
# Display the uploaded image
st.image(image, caption="Uploaded Image", use_column_width=True)
st.write(f"Image saved at: {image_path}")
# Step 4: Display the typed question
if question:
st.write(f"Your question: **{question}**")
# Optional: Process the image and question for a VLM (like CLIP or BLIP)
if uploaded_image and question:
st.write("Processing the image and question...")
output = prediction(intern_model, image_file, question)
st.write("Model output: This is where the answer will appear.")