import gradio as gr import os from PIL import Image, ImageOps import matplotlib.pyplot as plt import numpy as np import torch import requests from tqdm import tqdm from diffusers import StableDiffusionImg2ImgPipeline import torchvision.transforms as T from utils import preprocess, recover_image to_pil = T.ToPILImage() title = "Interactive demo: Raising the Cost of Malicious AI-Powered Image Editing" model_id_or_path = "runwayml/stable-diffusion-v1-5" # model_id_or_path = "CompVis/stable-diffusion-v1-4" # model_id_or_path = "CompVis/stable-diffusion-v1-3" # model_id_or_path = "CompVis/stable-diffusion-v1-2" # model_id_or_path = "CompVis/stable-diffusion-v1-1" pipe_img2img = StableDiffusionImg2ImgPipeline.from_pretrained( model_id_or_path, revision="fp16", torch_dtype=torch.float16, ) pipe_img2img = pipe_img2img.to("cuda") def pgd(X, model, eps=0.1, step_size=0.015, iters=40, clamp_min=0, clamp_max=1, mask=None): X_adv = X.clone().detach() + (torch.rand(*X.shape)*2*eps-eps).cuda() pbar = tqdm(range(iters)) for i in pbar: actual_step_size = step_size - (step_size - step_size / 100) / iters * i X_adv.requires_grad_(True) loss = (model(X_adv).latent_dist.mean).norm() pbar.set_description(f"[Running attack]: Loss {loss.item():.5f} | step size: {actual_step_size:.4}") grad, = torch.autograd.grad(loss, [X_adv]) X_adv = X_adv - grad.detach().sign() * actual_step_size X_adv = torch.minimum(torch.maximum(X_adv, X - eps), X + eps) X_adv.data = torch.clamp(X_adv, min=clamp_min, max=clamp_max) X_adv.grad = None if mask is not None: X_adv.data *= mask return X_adv def process_image(raw_image,prompt): resize = T.transforms.Resize(512) center_crop = T.transforms.CenterCrop(512) init_image = center_crop(resize(raw_image)) with torch.autocast('cuda'): X = preprocess(init_image).half().cuda() adv_X = pgd(X, model=pipe_img2img.vae.encode, clamp_min=-1, clamp_max=1, eps=0.06, # The higher, the less imperceptible the attack is step_size=0.02, # Set smaller than eps iters=100, # The higher, the stronger your attack will be ) # convert pixels back to [0,1] range adv_X = (adv_X / 2 + 0.5).clamp(0, 1) adv_image = to_pil(adv_X[0]).convert("RGB") # a good seed (uncomment the line below to generate new images) SEED = 9222 # SEED = np.random.randint(low=0, high=10000) # Play with these for improving generated image quality STRENGTH = 0.5 GUIDANCE = 7.5 NUM_STEPS = 50 with torch.autocast('cuda'): torch.manual_seed(SEED) image_nat = pipe_img2img(prompt=prompt, image=init_image, strength=STRENGTH, guidance_scale=GUIDANCE, num_inference_steps=NUM_STEPS).images[0] torch.manual_seed(SEED) image_adv = pipe_img2img(prompt=prompt, image=adv_image, strength=STRENGTH, guidance_scale=GUIDANCE, num_inference_steps=NUM_STEPS).images[0] return [(init_image,"Source Image"), (adv_image, "Adv Image"), (image_nat,"Gen. Image Nat"), (image_adv, "Gen. Image Adv")] interface = gr.Interface(fn=process_image, inputs=[gr.Image(type="pil"), gr.Textbox(label="Prompt")], outputs=[gr.Gallery( label="Generated images", show_label=False, elem_id="gallery" ).style(grid=[2], height="auto") ], title=title ) interface.launch(debug=True)