File size: 11,564 Bytes
08949f8
ffec523
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08949f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from scipy.stats import gaussian_kde

import gradio as gr
from pathlib import Path
import gradio as gr
import plotly.graph_objects as go


import re
import ast

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns


def convert_google_sheet_url(url):
    # Regular expression to match and capture the necessary part of the URL
    pattern = r'https://docs\.google\.com/spreadsheets/d/([a-zA-Z0-9-_]+)(/edit#gid=(\d+)|/edit.*)?'

    # Replace function to construct the new URL for CSV export
    # If gid is present in the URL, it includes it in the export URL, otherwise, it's omitted
    replacement = lambda m: f'https://docs.google.com/spreadsheets/d/{m.group(1)}/export?' + (f'gid={m.group(3)}&' if m.group(3) else '') + 'format=csv'

    # Replace using regex
    new_url = re.sub(pattern, replacement, url)

    return new_url

# Replace with your modified URL
# url = "https://docs.google.com/spreadsheets/d/1dlTjKJrGVwRDU8m-hT53IdSluRAsWXftnx5uRqnq4yE/edit?gid=0#gid=0"
url = "https://docs.google.com/spreadsheets/d/1MY0-DOitMZGnib73BAaSKg0TI7i5V1CXP8dF6jAgKWc/edit?gid=293606167#gid=293606167"

new_url = convert_google_sheet_url(url)


df = pd.read_csv(new_url)

# Set 'Categories' column as index
df1 = df.copy()
df1.set_index('Categories', inplace=True)

transposed_df = df.transpose()
transposed_df.columns = transposed_df.iloc[0]
df = transposed_df.drop(["Categories"])


df = df.fillna("[]")
df1 = df1.fillna("[]")


# Convert the string representation of lists into actual lists for all relevant columns
for col in df.columns:  # Skip the first column which is 'Categories'
    df[col] = df[col].apply(lambda x: ast.literal_eval(x) if isinstance(x, str) else x)


# Convert the string representation of lists into actual lists for all relevant columns
for col in df1.columns:  # Skip the first column which is 'Categories'
    df1[col] = df1[col].apply(lambda x: ast.literal_eval(x) if isinstance(x, str) else x)


cols = df.columns

# Get the specific column while filtering out empty cells
column_data = df[cols[0]]

# Filter out the empty lists ([])
filtered_column_data = column_data[column_data.apply(lambda x: x != [])]



def get_score(avg_kl_div,kl_div,missing,extra,common):
    Wc=1
    Wm=1.5
    We=1.5
    WeE=(We*extra)**2
    WeM=(Wm*missing)**2
    WeC=(We*common)**2
    if kl_div==-1:
        kl_div=avg_kl_div
    kl_div_factor=kl_div/avg_kl_div
    ans=kl_div_factor*(((WeE+WeM)/WeC)-2)#  (e**2 -c**2)/c**2 +(m**2-c**2)/c**2 => (0-1)*[((e**2+m**2)/c**2 -2)] => ((rank*y/a)m(m+1)/2))
    return ans
def get_individual_score(avg_kl_div,kl_div,e_or_m,common):
    if kl_div==-1:
        kl_div=avg_kl_div
    kl_div_factor=kl_div/avg_kl_div
    weight=1.5
    ans=avg_kl_div + ((1+(e_or_m/common))*(((e_or_m)*(e_or_m+1)))/2)**0.5 # X +- [(1+b/a)*n**2*y]
    # ans = kl_div_factor*((((weight*e_or_m)**2)/(common**2))-1)
    return ans


def get_entity_scores(ans4):
    # Calculate average KL divergence
    tt = 0
    avg_kl_div = 0
    for t in ans4:
        if t[0] != -1:
            avg_kl_div += t[0]
            tt += 1

    # Avoid division by zero
    if tt > 0:
        avg_kl_div /= tt
    else:
        avg_kl_div = 0

    extra_entity_score = []
    missing_entity_score = []

    for t in ans4:
        extra_entity_score.append(get_individual_score(avg_kl_div, t[0], t[2], t[3]))
        missing_entity_score.append(get_individual_score(avg_kl_div, t[0], t[1], t[3]))

    extra_entity_score.sort()
    missing_entity_score.sort()

    return (
        missing_entity_score[:int(0.950 * len(missing_entity_score))],
        extra_entity_score[:int(0.95 * len(extra_entity_score))]
    )


compare = df.columns[0]
column_data = df[compare]

# Filter out the empty lists ([])
filtered_column_data = column_data[column_data.apply(lambda x: x != [])]

# Display the filtered column data
variables = filtered_column_data.to_list()
models = filtered_column_data.index.to_list()

color_schemes = [
    '#d60000',  # Red
    '#2f5282',  # Navy Blue
    '#f15cd8',  # Pink
    '#66abb7',  # Light Teal
    '#ce7391',  # Rose
    '#6bdb7a',  # Light Green
    '#ea8569',  # Coral
    '#b36cc9',  # Lavender
    '#ffd700',  # Gold
    '#ff7f0e',  # Orange
    '#1f77b4',  # Blue
    '#2ca02c',  # Green
]


colors = color_schemes[:len(models)]

values_dict = {model: var for var, model in zip(variables, models)}
color_dict = {model: color for model, color in zip(models, colors)}


# plot_grouped_3d_kde(values_dict, models, color_dict, compare)


import numpy as np
import plotly.graph_objects as go
from scipy.stats import gaussian_kde
import plotly.express as px



def adjust_kde_range(data, increment=25, threshold=0.00005):
    kde = gaussian_kde(data)
    min_x, max_x = min(data) - increment, max(data) + increment

    # Keep expanding the range until both tails get close to zero
    while True:
        x_values = np.linspace(min_x, max_x, 1000)
        y_values = kde(x_values)

        # # Check the values at the tails
        # print(y_values[0], y_values[-1])
        # print(x_values[0], x_values[-1], "\n")

        if y_values[0] < threshold and y_values[-1] < threshold:
            break  # Stop if both tails are below the threshold

        # Extend the range
        min_x -= increment
        max_x += increment

    return x_values, y_values


def compute_kde_ranges(missing_scores, extra_scores):
    data1 = np.array(missing_scores)
    data2 = -np.array(extra_scores)  # Negate extra scores for alignment

    # Compute KDE for missing scores with extended range
    x_missing, y_missing = adjust_kde_range(data1)

    # Compute KDE for extra scores with extended range
    x_extra, y_extra = adjust_kde_range(data2)

    # Calculate axis limits
    Val_x_extra = [max(x_extra)]
    Val_x_miss = [x_missing[np.argmax(y_missing)]]

    peak_extra = max(y_extra)
    peak_miss = max(y_missing)

    # Calculate the x and y axis ranges
    min_x = min(min(x_missing), min(x_extra))
    max_x = max(max(x_missing), max(x_extra))
    x_range = [min_x, max_x]

    y_range = [-peak_extra, peak_miss * 1.25]

    return x_missing, y_missing, x_extra, y_extra, x_range, y_range


def calculate_ticks(x_min, x_max, num_ticks=20):
    # Calculate the total range
    total_range = x_max - x_min

    # Determine the interval between ticks
    interval = total_range / (num_ticks - 1)  # We need num_ticks - 1 intervals

    # Generate tick values
    ticks = np.arange(x_min, x_max + interval, interval)

    return ticks




def plot_filled_surface(x, z, y_level, color):
    """
    Create a 3D mesh to fill the surface between the KDE curve and the 0-axis.
    """
    x_full = np.concatenate([x, x[::-1]])  # X-axis values, with reverse for baseline
    z_full = np.concatenate([z, np.zeros_like(z)])  # Z-axis (KDE and baseline at 0)
    y_full = np.full_like(x_full, y_level)  # Flat Y plane (constant for each model)

    num_pts = len(x)
    i = np.arange(num_pts - 1)
    j = i + 1
    k = i + num_pts

    i = np.concatenate([i, i + num_pts])
    j = np.concatenate([j, j + num_pts])
    k = np.concatenate([k, i[:len(i)//2]])

    return go.Mesh3d(
        x=x_full, y=y_full, z=z_full,
        i=i, j=j, k=k,
        opacity=0.5,
        color=color,
        showscale=False,
        legendgroup='filling'
    )



def plot_kde_3d(values_dict, models, color_dict, compare):

    # values_dict, models, color_dict, compare = (values_dict, models, color_dict, 'Comparison Title')
    fig = go.Figure()

    model_y_positions = {model: i for i, model in enumerate(models)}

    x_ranges = []
    y_ranges = []

    for model in models:
        missing_scores, extra_scores = get_entity_scores(values_dict[model])

        # Compute KDE and ranges for missing and extra scores
        x_m, y_m, x_e, y_e, x_range, y_range = compute_kde_ranges(missing_scores, extra_scores)

        # Append ranges for global limits
        x_ranges.append(x_range)
        y_ranges.append(y_range)

        # Get color for this model
        color = color_dict.get(model, 'rgba(0, 0, 0, 0.5)')  # Default color if not found

        # Create filled surfaces between KDE curves and zero line
        fig.add_trace(plot_filled_surface(x_m, y_m, model_y_positions[model], color))
        fig.add_trace(plot_filled_surface(x_e, -y_e, model_y_positions[model], color))

        # Plot the KDE lines (for visualization of the curves)
        fig.add_trace(go.Scatter3d(
            x=x_m,
            y=[model_y_positions[model]] * len(x_m),
            z=y_m,
            mode='lines',
            line=dict(color='blue'),
            showlegend=False
        ))

        fig.add_trace(go.Scatter3d(
            x=x_e,
            y=[model_y_positions[model]] * len(x_e),
            z=-y_e,
            mode='lines',
            line=dict(color='red'),
            showlegend=False  # Hide legend for extra scores to combine with missing scores
        ))

    # Compute global x and y limits
    x_min = min(r[0] for r in x_ranges)
    x_max = max(r[1] for r in x_ranges)
    y_min = min(r[0] for r in y_ranges)
    y_max = max(r[1] for r in y_ranges)

    # Define x, y, z axis tick intervals
    x_ticks = calculate_ticks(np.floor(x_min), np.ceil(x_max))
    y_ticks = list(model_y_positions.values())
    z_ticks = calculate_ticks(y_min, y_max)

    # Add a line through the 0-axis of density for each model
    for model in models:
        color = color_dict.get(model, 'rgba(0, 0, 0, 0.5)')
        fig.add_trace(go.Scatter3d(
            x=[x_min, x_max],
            y=[model_y_positions[model], model_y_positions[model]],
            z=[0, 0],
            mode='lines',
            # line=dict(color=color, width=2, dash='dash'),
            line=dict(color=color),
            name=model,

            # showlegend=False
        ))

    # Update layout for 3D plot
    fig.update_layout(
        title=f'3D KDE Plots for {compare}',
        scene=dict(
            xaxis_title='Score',
            yaxis_title='Model',
            zaxis_title='Density',
            xaxis=dict(
                range=[x_min, x_max],
                tickvals=x_ticks,
                ticktext=[f'{tick:.2f}' for tick in x_ticks]
            ),
            yaxis=dict(
                tickvals=y_ticks,
                ticktext=[list(model_y_positions.keys())[list(model_y_positions.values()).index(tick)] for tick in y_ticks]
            ),
            zaxis=dict(
                range=[y_min, y_max],
                tickvals=z_ticks,
                ticktext=[f'{tick:.4f}' for tick in z_ticks]
            ),
            camera=dict(
                eye=dict(x=1.25, y=1.25, z=1.25)
            )
        ),
        autosize=True,
        width=1200*.75,
        height=800*.75
    )

    # Save the plot as an HTML file
    # plot = px.scatter(x=range(10), y=range(10))
    filename = f"{compare}.html"
    fig.write_html(filename)

    # fig.show()

    return fig



# Path to your saved HTML file
html_file_path = '3d_plot.html'
title = 'My 3D Plot'

def display_plot():
    fig = plot_kde_3d(values_dict, models, color_dict, compare)
    return fig


# Define the Gradio interface
interface = gr.Interface(
    fn=display_plot,
    inputs=[],
    outputs=gr.Plot(),
    title='Plotly 3D Plot in Gradio',
    description='This app displays a 3D Plotly plot directly in the Gradio interface.',
    live=False
)

# Launch the Gradio app
if __name__ == "__main__":
    interface.launch()