Spaces:
Sleeping
Sleeping
File size: 11,564 Bytes
08949f8 ffec523 08949f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 |
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from scipy.stats import gaussian_kde
import gradio as gr
from pathlib import Path
import gradio as gr
import plotly.graph_objects as go
import re
import ast
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
def convert_google_sheet_url(url):
# Regular expression to match and capture the necessary part of the URL
pattern = r'https://docs\.google\.com/spreadsheets/d/([a-zA-Z0-9-_]+)(/edit#gid=(\d+)|/edit.*)?'
# Replace function to construct the new URL for CSV export
# If gid is present in the URL, it includes it in the export URL, otherwise, it's omitted
replacement = lambda m: f'https://docs.google.com/spreadsheets/d/{m.group(1)}/export?' + (f'gid={m.group(3)}&' if m.group(3) else '') + 'format=csv'
# Replace using regex
new_url = re.sub(pattern, replacement, url)
return new_url
# Replace with your modified URL
# url = "https://docs.google.com/spreadsheets/d/1dlTjKJrGVwRDU8m-hT53IdSluRAsWXftnx5uRqnq4yE/edit?gid=0#gid=0"
url = "https://docs.google.com/spreadsheets/d/1MY0-DOitMZGnib73BAaSKg0TI7i5V1CXP8dF6jAgKWc/edit?gid=293606167#gid=293606167"
new_url = convert_google_sheet_url(url)
df = pd.read_csv(new_url)
# Set 'Categories' column as index
df1 = df.copy()
df1.set_index('Categories', inplace=True)
transposed_df = df.transpose()
transposed_df.columns = transposed_df.iloc[0]
df = transposed_df.drop(["Categories"])
df = df.fillna("[]")
df1 = df1.fillna("[]")
# Convert the string representation of lists into actual lists for all relevant columns
for col in df.columns: # Skip the first column which is 'Categories'
df[col] = df[col].apply(lambda x: ast.literal_eval(x) if isinstance(x, str) else x)
# Convert the string representation of lists into actual lists for all relevant columns
for col in df1.columns: # Skip the first column which is 'Categories'
df1[col] = df1[col].apply(lambda x: ast.literal_eval(x) if isinstance(x, str) else x)
cols = df.columns
# Get the specific column while filtering out empty cells
column_data = df[cols[0]]
# Filter out the empty lists ([])
filtered_column_data = column_data[column_data.apply(lambda x: x != [])]
def get_score(avg_kl_div,kl_div,missing,extra,common):
Wc=1
Wm=1.5
We=1.5
WeE=(We*extra)**2
WeM=(Wm*missing)**2
WeC=(We*common)**2
if kl_div==-1:
kl_div=avg_kl_div
kl_div_factor=kl_div/avg_kl_div
ans=kl_div_factor*(((WeE+WeM)/WeC)-2)# (e**2 -c**2)/c**2 +(m**2-c**2)/c**2 => (0-1)*[((e**2+m**2)/c**2 -2)] => ((rank*y/a)m(m+1)/2))
return ans
def get_individual_score(avg_kl_div,kl_div,e_or_m,common):
if kl_div==-1:
kl_div=avg_kl_div
kl_div_factor=kl_div/avg_kl_div
weight=1.5
ans=avg_kl_div + ((1+(e_or_m/common))*(((e_or_m)*(e_or_m+1)))/2)**0.5 # X +- [(1+b/a)*n**2*y]
# ans = kl_div_factor*((((weight*e_or_m)**2)/(common**2))-1)
return ans
def get_entity_scores(ans4):
# Calculate average KL divergence
tt = 0
avg_kl_div = 0
for t in ans4:
if t[0] != -1:
avg_kl_div += t[0]
tt += 1
# Avoid division by zero
if tt > 0:
avg_kl_div /= tt
else:
avg_kl_div = 0
extra_entity_score = []
missing_entity_score = []
for t in ans4:
extra_entity_score.append(get_individual_score(avg_kl_div, t[0], t[2], t[3]))
missing_entity_score.append(get_individual_score(avg_kl_div, t[0], t[1], t[3]))
extra_entity_score.sort()
missing_entity_score.sort()
return (
missing_entity_score[:int(0.950 * len(missing_entity_score))],
extra_entity_score[:int(0.95 * len(extra_entity_score))]
)
compare = df.columns[0]
column_data = df[compare]
# Filter out the empty lists ([])
filtered_column_data = column_data[column_data.apply(lambda x: x != [])]
# Display the filtered column data
variables = filtered_column_data.to_list()
models = filtered_column_data.index.to_list()
color_schemes = [
'#d60000', # Red
'#2f5282', # Navy Blue
'#f15cd8', # Pink
'#66abb7', # Light Teal
'#ce7391', # Rose
'#6bdb7a', # Light Green
'#ea8569', # Coral
'#b36cc9', # Lavender
'#ffd700', # Gold
'#ff7f0e', # Orange
'#1f77b4', # Blue
'#2ca02c', # Green
]
colors = color_schemes[:len(models)]
values_dict = {model: var for var, model in zip(variables, models)}
color_dict = {model: color for model, color in zip(models, colors)}
# plot_grouped_3d_kde(values_dict, models, color_dict, compare)
import numpy as np
import plotly.graph_objects as go
from scipy.stats import gaussian_kde
import plotly.express as px
def adjust_kde_range(data, increment=25, threshold=0.00005):
kde = gaussian_kde(data)
min_x, max_x = min(data) - increment, max(data) + increment
# Keep expanding the range until both tails get close to zero
while True:
x_values = np.linspace(min_x, max_x, 1000)
y_values = kde(x_values)
# # Check the values at the tails
# print(y_values[0], y_values[-1])
# print(x_values[0], x_values[-1], "\n")
if y_values[0] < threshold and y_values[-1] < threshold:
break # Stop if both tails are below the threshold
# Extend the range
min_x -= increment
max_x += increment
return x_values, y_values
def compute_kde_ranges(missing_scores, extra_scores):
data1 = np.array(missing_scores)
data2 = -np.array(extra_scores) # Negate extra scores for alignment
# Compute KDE for missing scores with extended range
x_missing, y_missing = adjust_kde_range(data1)
# Compute KDE for extra scores with extended range
x_extra, y_extra = adjust_kde_range(data2)
# Calculate axis limits
Val_x_extra = [max(x_extra)]
Val_x_miss = [x_missing[np.argmax(y_missing)]]
peak_extra = max(y_extra)
peak_miss = max(y_missing)
# Calculate the x and y axis ranges
min_x = min(min(x_missing), min(x_extra))
max_x = max(max(x_missing), max(x_extra))
x_range = [min_x, max_x]
y_range = [-peak_extra, peak_miss * 1.25]
return x_missing, y_missing, x_extra, y_extra, x_range, y_range
def calculate_ticks(x_min, x_max, num_ticks=20):
# Calculate the total range
total_range = x_max - x_min
# Determine the interval between ticks
interval = total_range / (num_ticks - 1) # We need num_ticks - 1 intervals
# Generate tick values
ticks = np.arange(x_min, x_max + interval, interval)
return ticks
def plot_filled_surface(x, z, y_level, color):
"""
Create a 3D mesh to fill the surface between the KDE curve and the 0-axis.
"""
x_full = np.concatenate([x, x[::-1]]) # X-axis values, with reverse for baseline
z_full = np.concatenate([z, np.zeros_like(z)]) # Z-axis (KDE and baseline at 0)
y_full = np.full_like(x_full, y_level) # Flat Y plane (constant for each model)
num_pts = len(x)
i = np.arange(num_pts - 1)
j = i + 1
k = i + num_pts
i = np.concatenate([i, i + num_pts])
j = np.concatenate([j, j + num_pts])
k = np.concatenate([k, i[:len(i)//2]])
return go.Mesh3d(
x=x_full, y=y_full, z=z_full,
i=i, j=j, k=k,
opacity=0.5,
color=color,
showscale=False,
legendgroup='filling'
)
def plot_kde_3d(values_dict, models, color_dict, compare):
# values_dict, models, color_dict, compare = (values_dict, models, color_dict, 'Comparison Title')
fig = go.Figure()
model_y_positions = {model: i for i, model in enumerate(models)}
x_ranges = []
y_ranges = []
for model in models:
missing_scores, extra_scores = get_entity_scores(values_dict[model])
# Compute KDE and ranges for missing and extra scores
x_m, y_m, x_e, y_e, x_range, y_range = compute_kde_ranges(missing_scores, extra_scores)
# Append ranges for global limits
x_ranges.append(x_range)
y_ranges.append(y_range)
# Get color for this model
color = color_dict.get(model, 'rgba(0, 0, 0, 0.5)') # Default color if not found
# Create filled surfaces between KDE curves and zero line
fig.add_trace(plot_filled_surface(x_m, y_m, model_y_positions[model], color))
fig.add_trace(plot_filled_surface(x_e, -y_e, model_y_positions[model], color))
# Plot the KDE lines (for visualization of the curves)
fig.add_trace(go.Scatter3d(
x=x_m,
y=[model_y_positions[model]] * len(x_m),
z=y_m,
mode='lines',
line=dict(color='blue'),
showlegend=False
))
fig.add_trace(go.Scatter3d(
x=x_e,
y=[model_y_positions[model]] * len(x_e),
z=-y_e,
mode='lines',
line=dict(color='red'),
showlegend=False # Hide legend for extra scores to combine with missing scores
))
# Compute global x and y limits
x_min = min(r[0] for r in x_ranges)
x_max = max(r[1] for r in x_ranges)
y_min = min(r[0] for r in y_ranges)
y_max = max(r[1] for r in y_ranges)
# Define x, y, z axis tick intervals
x_ticks = calculate_ticks(np.floor(x_min), np.ceil(x_max))
y_ticks = list(model_y_positions.values())
z_ticks = calculate_ticks(y_min, y_max)
# Add a line through the 0-axis of density for each model
for model in models:
color = color_dict.get(model, 'rgba(0, 0, 0, 0.5)')
fig.add_trace(go.Scatter3d(
x=[x_min, x_max],
y=[model_y_positions[model], model_y_positions[model]],
z=[0, 0],
mode='lines',
# line=dict(color=color, width=2, dash='dash'),
line=dict(color=color),
name=model,
# showlegend=False
))
# Update layout for 3D plot
fig.update_layout(
title=f'3D KDE Plots for {compare}',
scene=dict(
xaxis_title='Score',
yaxis_title='Model',
zaxis_title='Density',
xaxis=dict(
range=[x_min, x_max],
tickvals=x_ticks,
ticktext=[f'{tick:.2f}' for tick in x_ticks]
),
yaxis=dict(
tickvals=y_ticks,
ticktext=[list(model_y_positions.keys())[list(model_y_positions.values()).index(tick)] for tick in y_ticks]
),
zaxis=dict(
range=[y_min, y_max],
tickvals=z_ticks,
ticktext=[f'{tick:.4f}' for tick in z_ticks]
),
camera=dict(
eye=dict(x=1.25, y=1.25, z=1.25)
)
),
autosize=True,
width=1200*.75,
height=800*.75
)
# Save the plot as an HTML file
# plot = px.scatter(x=range(10), y=range(10))
filename = f"{compare}.html"
fig.write_html(filename)
# fig.show()
return fig
# Path to your saved HTML file
html_file_path = '3d_plot.html'
title = 'My 3D Plot'
def display_plot():
fig = plot_kde_3d(values_dict, models, color_dict, compare)
return fig
# Define the Gradio interface
interface = gr.Interface(
fn=display_plot,
inputs=[],
outputs=gr.Plot(),
title='Plotly 3D Plot in Gradio',
description='This app displays a 3D Plotly plot directly in the Gradio interface.',
live=False
)
# Launch the Gradio app
if __name__ == "__main__":
interface.launch()
|