Rahatara commited on
Commit
e12e0a9
·
verified ·
1 Parent(s): f6933d1

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +114 -0
app.py ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import fitz # PyMuPDF
3
+ from sentence_transformers import SentenceTransformer
4
+ import numpy as np
5
+ import faiss
6
+ from typing import List, Tuple, Dict
7
+ import gradio as gr
8
+ from google.generativeai import GenerativeModel, configure, types
9
+
10
+ # Configure the Google Generative AI API
11
+ GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
12
+ configure(api_key=GOOGLE_API_KEY)
13
+
14
+ # MyApp class to handle PDFs and vector search
15
+ class MyApp:
16
+ def __init__(self) -> None:
17
+ self.documents = []
18
+ self.embeddings = None
19
+ self.index = None
20
+ self.model = SentenceTransformer('all-MiniLM-L6-v2')
21
+
22
+ def load_pdfs(self, file_paths: List[str]) -> None:
23
+ """Extracts text from multiple PDF files and stores them."""
24
+ self.documents = []
25
+ for file_path in file_paths:
26
+ doc = fitz.open(file_path)
27
+ for page_num in range(len(doc)):
28
+ page = doc[page_num]
29
+ text = page.get_text()
30
+ self.documents.append({"file": file_path, "page": page_num + 1, "content": text})
31
+ print("PDFs processed successfully!")
32
+
33
+ def build_vector_db(self) -> None:
34
+ """Builds a vector database using the content of the PDFs."""
35
+ if not self.documents:
36
+ print("No documents to process.")
37
+ return
38
+ contents = [doc["content"] for doc in self.documents]
39
+ self.embeddings = self.model.encode(contents, show_progress_bar=True)
40
+ self.index = faiss.IndexFlatL2(self.embeddings.shape[1])
41
+ self.index.add(np.array(self.embeddings))
42
+ print("Vector database built successfully!")
43
+
44
+ def search_documents(self, query: str, k: int = 3) -> List[Dict]:
45
+ """Searches for relevant document snippets using vector similarity."""
46
+ if not self.index:
47
+ print("Vector database is not built.")
48
+ return []
49
+ query_embedding = self.model.encode([query], show_progress_bar=False)
50
+ D, I = self.index.search(np.array(query_embedding), k)
51
+ results = [self.documents[i] for i in I[0]]
52
+ return results if results else [{"content": "No relevant documents found."}]
53
+
54
+ # Create an instance of MyApp
55
+ app = MyApp()
56
+
57
+ # Gradio functions
58
+ def upload_files(files) -> str:
59
+ file_paths = [file.name for file in files]
60
+ app.load_pdfs(file_paths)
61
+ return f"Uploaded {len(files)} files successfully."
62
+
63
+ def build_vector_db() -> str:
64
+ app.build_vector_db()
65
+ return "Vector database built successfully!"
66
+
67
+ def respond(message: str, history: List[Tuple[str, str]]) -> Tuple[List[Tuple[str, str]], str]:
68
+ # Retrieve relevant documents
69
+ retrieved_docs = app.search_documents(message)
70
+ context = "\n".join(
71
+ [f"File: {doc['file']}, Page: {doc['page']}\n{doc['content'][:300]}..." for doc in retrieved_docs]
72
+ ) # Trimming content for brevity
73
+
74
+ # Generate response using the generative model
75
+ model = GenerativeModel("gemini-1.5-pro-latest")
76
+ generation_config = types.GenerationConfig(
77
+ temperature=0.7,
78
+ max_output_tokens=1024,
79
+ )
80
+
81
+ try:
82
+ # The context is used as part of the prompt for the generative model
83
+ response = model.generate_content([f"Context:\n{context}\n\nQuestion:\n{message}"], generation_config=generation_config)
84
+ response_content = response.text if hasattr(response, "text") else "No response generated."
85
+ except Exception as e:
86
+ response_content = f"An error occurred while generating the response: {str(e)}"
87
+
88
+ # Append the message and generated response to the chat history
89
+ history.append((message, response_content))
90
+ return history, ""
91
+
92
+ # Gradio Interface
93
+ with gr.Blocks() as demo:
94
+ gr.Markdown("# PDF Chatbot")
95
+ gr.Markdown("Upload your PDFs, build a vector database, and start querying your documents.")
96
+
97
+ with gr.Row():
98
+ with gr.Column():
99
+ upload_btn = gr.File(label="Upload PDFs", file_types=[".pdf"], file_count="multiple")
100
+ upload_message = gr.Textbox(label="Upload Status", lines=2)
101
+ build_db_btn = gr.Button("Build Vector Database")
102
+ db_message = gr.Textbox(label="DB Build Status", lines=2)
103
+
104
+ upload_btn.change(upload_files, inputs=[upload_btn], outputs=[upload_message])
105
+ build_db_btn.click(build_vector_db, inputs=[], outputs=[db_message])
106
+
107
+ with gr.Column():
108
+ chatbot = gr.Chatbot(label="Chat Responses")
109
+ query_input = gr.Textbox(label="Enter your query here")
110
+ submit_btn = gr.Button("Submit")
111
+ submit_btn.click(respond, inputs=[query_input, chatbot], outputs=[chatbot, query_input])
112
+
113
+ # Launch the Gradio app
114
+ demo.launch()