Rahatara commited on
Commit
c3ce506
·
verified ·
1 Parent(s): 8e8971a

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +113 -0
app.py ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from huggingface_hub import InferenceClient
3
+ from typing import List, Tuple
4
+ import fitz # PyMuPDF
5
+ from sentence_transformers import SentenceTransformer, util
6
+ import numpy as np
7
+ import faiss
8
+
9
+ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
10
+
11
+ # Placeholder for the app's state
12
+ class MyApp:
13
+ def __init__(self) -> None:
14
+ self.documents = []
15
+ self.embeddings = None
16
+ self.index = None
17
+ self.load_pdf("THEDIA1.pdf")
18
+ self.build_vector_db()
19
+
20
+ def load_pdf(self, file_path: str) -> None:
21
+ """Extracts text from a PDF file and stores it in the app's documents."""
22
+ doc = fitz.open(file_path)
23
+ self.documents = []
24
+ for page_num in range(len(doc)):
25
+ page = doc[page_num]
26
+ text = page.get_text()
27
+ self.documents.append({"page": page_num + 1, "content": text})
28
+ print("PDF processed successfully!")
29
+
30
+ def build_vector_db(self) -> None:
31
+ """Builds a vector database using the content of the PDF."""
32
+ model = SentenceTransformer('all-MiniLM-L6-v2')
33
+ self.embeddings = model.encode([doc["content"] for doc in self.documents])
34
+ self.index = faiss.IndexFlatL2(self.embeddings.shape[1])
35
+ self.index.add(np.array(self.embeddings))
36
+ print("Vector database built successfully!")
37
+
38
+ def search_documents(self, query: str, k: int = 3) -> List[str]:
39
+ """Searches for relevant documents using vector similarity."""
40
+ model = SentenceTransformer('all-MiniLM-L6-v2')
41
+ query_embedding = model.encode([query])
42
+ D, I = self.index.search(np.array(query_embedding), k)
43
+ results = [self.documents[i]["content"] for i in I[0]]
44
+ return results if results else ["No relevant documents found."]
45
+
46
+ app = MyApp()
47
+
48
+ def respond(
49
+ message: str,
50
+ history: List[Tuple[str, str]],
51
+ system_message: str,
52
+ max_tokens: int,
53
+ temperature: float,
54
+ top_p: float,
55
+ ):
56
+ system_message = "You are a knowledgeable DBT coach. Use relevant documents to guide users through DBT exercises and provide helpful information."
57
+ messages = [{"role": "system", "content": system_message}]
58
+
59
+ for val in history:
60
+ if val[0]:
61
+ messages.append({"role": "user", "content": val[0]})
62
+ if val[1]:
63
+ messages.append({"role": "assistant", "content": val[1]})
64
+
65
+ messages.append({"role": "user", "content": message})
66
+
67
+ # RAG - Retrieve relevant documents
68
+ retrieved_docs = app.search_documents(message)
69
+ context = "\n".join(retrieved_docs)
70
+ messages.append({"role": "system", "content": "Relevant documents: " + context})
71
+
72
+ response = ""
73
+ for message in client.chat_completion(
74
+ messages,
75
+ max_tokens=max_tokens,
76
+ stream=True,
77
+ temperature=temperature,
78
+ top_p=top_p,
79
+ ):
80
+ token = message.choices[0].delta.content
81
+ response += token
82
+ yield response
83
+
84
+ demo = gr.Blocks()
85
+
86
+ with demo:
87
+ gr.Markdown("🧘‍♀️ **Dialectical Behaviour Therapy**")
88
+ gr.Markdown(
89
+ "Disclaimer: This chatbot is based on a DBT exercise book that is publicly available. "
90
+ "We are not medical practitioners, and the use of this chatbot is at your own responsibility."
91
+ )
92
+
93
+ chatbot = gr.ChatInterface(
94
+ respond,
95
+ additional_inputs=[
96
+ gr.Textbox(value="You are a knowledgeable DBT coach. Use relevant documents to guide users through DBT exercises and provide helpful information.", label="System message"),
97
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
98
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
99
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
100
+ ],
101
+ examples=[
102
+ ["I feel overwhelmed with work."],
103
+ ["Can you guide me through a quick meditation?"],
104
+ ["How do I stop worrying about things I can't control?"],
105
+ ["What are some DBT skills for managing anxiety?"],
106
+ ["Can you explain mindfulness in DBT?"],
107
+ ["What is radical acceptance?"]
108
+ ],
109
+ title='DBT Coach 🧘‍♀️'
110
+ )
111
+
112
+ if __name__ == "__main__":
113
+ demo.launch()