import streamlit as st import torch from transformers import GPT2LMHeadModel, GPT2Tokenizer model_name_or_path = "sberbank-ai/rugpt3small_based_on_gpt2" tokenizer = GPT2Tokenizer.from_pretrained(model_name_or_path) model = GPT2LMHeadModel.from_pretrained( model_name_or_path, output_attentions = False, output_hidden_states = False, ) # Загрузка сохраненных весов model_weights_path = "hunter_pelevin.pt" device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model.load_state_dict(torch.load(model_weights_path, map_location=device)) model.eval() def generate_text(user_input, model=model, tokenizer=tokenizer): input_ids = tokenizer.encode(user_input, return_tensors="pt") with torch.no_grad(): out = model.generate( input_ids, max_length=slider1, num_beams=10, do_sample=True, temperature=slider3, top_k=500, top_p=0.8, no_repeat_ngram_size=3, num_return_sequences=slider2, ) generated_text = list(map(tokenizer.decode, out))[0] return generated_text st.title("Простое веб-приложение на Streamlit") # Получаем ввод от пользователя user_input = st.text_area("Введите текст:") slider1 = st.slider("Выберите длинну текста:", min_value=10, max_value=100, value=50) slider2 = st.slider("Выберите количество генераций", min_value=1, max_value=5, value=2) slider3 = st.slider("Выберите степень безумия:", min_value=0.1, max_value=3.0, value=1.2, step=0.1) if user_input: gen_text = generate_text(user_input) st.write(gen_text)