Spaces:
Sleeping
Sleeping
RMakushkin
commited on
Commit
·
b16a5c8
1
Parent(s):
6e98257
Upload 5 files
Browse files- .gitattributes +2 -0
- dataset.csv +3 -0
- embeddings.txt +3 -0
- func.py +37 -0
- requirements.txt +77 -0
- shows.py +67 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
dataset.csv filter=lfs diff=lfs merge=lfs -text
|
37 |
+
embeddings.txt filter=lfs diff=lfs merge=lfs -text
|
dataset.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f6c10dbf7a899fbf0553bf6cab5fd11abf35cf224e4e6e4f7843fdd19144c550
|
3 |
+
size 19266108
|
embeddings.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b5b8bd90c7567e8b983efa49fe56a6f4d94406196bf6d89184d1cb46902624d
|
3 |
+
size 292747747
|
func.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from transformers import BertModel, BertTokenizer
|
5 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
6 |
+
|
7 |
+
|
8 |
+
tokenizer = BertTokenizer.from_pretrained("DeepPavlov/rubert-base-cased-sentence")
|
9 |
+
model = BertModel.from_pretrained("DeepPavlov/rubert-base-cased-sentence", output_hidden_states = True)
|
10 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
11 |
+
|
12 |
+
|
13 |
+
def filter_by_ganre(df: pd.DataFrame, ganre_list: list):
|
14 |
+
filtered_df = df[df['ganres'].apply(lambda x: any(g in ganre_list for g in(x)))]
|
15 |
+
return filtered_df
|
16 |
+
|
17 |
+
def mean_pooling(model_output, attention_mask):
|
18 |
+
token_embeddings = model_output['last_hidden_state']
|
19 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
20 |
+
sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1)
|
21 |
+
sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
22 |
+
return sum_embeddings / sum_mask
|
23 |
+
|
24 |
+
def recommendation(df: pd.DataFrame, embeddings:np.array, user_text: str, n=10):
|
25 |
+
token_user_text = tokenizer(user_text, return_tensors='pt', padding='max_length', truncation=True, max_length=512)
|
26 |
+
user_embeddings = torch.Tensor().to(device)
|
27 |
+
model.to(device)
|
28 |
+
model.eval()
|
29 |
+
with torch.no_grad():
|
30 |
+
batch = {k: v.to(device) for k, v in token_user_text.items()}
|
31 |
+
outputs = model(**batch)
|
32 |
+
user_embeddings = torch.cat([user_embeddings, mean_pooling(outputs, batch['attention_mask'])])
|
33 |
+
user_embeddings = user_embeddings.cpu().numpy()
|
34 |
+
cosine_similarities = cosine_similarity(embeddings, user_embeddings.reshape(1, -1))
|
35 |
+
df_res = pd.DataFrame(cosine_similarities.ravel(), columns=['cos_sim']).sort_values('cos_sim', ascending=False)
|
36 |
+
dict_topn = df_res.iloc[:n, :].cos_sim.to_dict()
|
37 |
+
return dict_topn
|
requirements.txt
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
altair==5.2.0
|
2 |
+
attrs==23.1.0
|
3 |
+
blinker==1.7.0
|
4 |
+
cachetools==5.3.2
|
5 |
+
certifi==2023.11.17
|
6 |
+
charset-normalizer==3.3.2
|
7 |
+
click==8.1.7
|
8 |
+
filelock==3.13.1
|
9 |
+
fsspec==2023.12.1
|
10 |
+
gitdb==4.0.11
|
11 |
+
GitPython==3.1.40
|
12 |
+
huggingface-hub==0.19.4
|
13 |
+
idna==3.6
|
14 |
+
imageio==2.33.0
|
15 |
+
importlib-metadata==6.11.0
|
16 |
+
Jinja2==3.1.2
|
17 |
+
joblib==1.3.2
|
18 |
+
jsonschema==4.20.0
|
19 |
+
jsonschema-specifications==2023.11.2
|
20 |
+
markdown-it-py==3.0.0
|
21 |
+
MarkupSafe==2.1.3
|
22 |
+
mdurl==0.1.2
|
23 |
+
mpmath==1.3.0
|
24 |
+
networkx==3.2.1
|
25 |
+
numpy==1.26.2
|
26 |
+
nvidia-cublas-cu12==12.1.3.1
|
27 |
+
nvidia-cuda-cupti-cu12==12.1.105
|
28 |
+
nvidia-cuda-nvrtc-cu12==12.1.105
|
29 |
+
nvidia-cuda-runtime-cu12==12.1.105
|
30 |
+
nvidia-cudnn-cu12==8.9.2.26
|
31 |
+
nvidia-cufft-cu12==11.0.2.54
|
32 |
+
nvidia-curand-cu12==10.3.2.106
|
33 |
+
nvidia-cusolver-cu12==11.4.5.107
|
34 |
+
nvidia-cusparse-cu12==12.1.0.106
|
35 |
+
nvidia-nccl-cu12==2.18.1
|
36 |
+
nvidia-nvjitlink-cu12==12.3.101
|
37 |
+
nvidia-nvtx-cu12==12.1.105
|
38 |
+
packaging==23.2
|
39 |
+
pandas==2.1.3
|
40 |
+
Pillow==10.1.0
|
41 |
+
protobuf==4.25.1
|
42 |
+
pyarrow==14.0.1
|
43 |
+
pydeck==0.8.1b0
|
44 |
+
Pygments==2.17.2
|
45 |
+
python-dateutil==2.8.2
|
46 |
+
pytz==2023.3.post1
|
47 |
+
PyYAML==6.0.1
|
48 |
+
referencing==0.32.0
|
49 |
+
regex==2023.10.3
|
50 |
+
requests==2.31.0
|
51 |
+
rich==13.7.0
|
52 |
+
rpds-py==0.13.2
|
53 |
+
safetensors==0.4.1
|
54 |
+
scikit-learn==1.3.2
|
55 |
+
scipy==1.11.4
|
56 |
+
sentencepiece==0.1.99
|
57 |
+
six==1.16.0
|
58 |
+
smmap==5.0.1
|
59 |
+
streamlit==1.29.0
|
60 |
+
sympy==1.12
|
61 |
+
tenacity==8.2.3
|
62 |
+
threadpoolctl==3.2.0
|
63 |
+
tokenizers==0.15.0
|
64 |
+
toml==0.10.2
|
65 |
+
toolz==0.12.0
|
66 |
+
torch==2.1.1
|
67 |
+
tornado==6.4
|
68 |
+
tqdm==4.66.1
|
69 |
+
transformers==4.35.2
|
70 |
+
triton==2.1.0
|
71 |
+
typing_extensions==4.8.0
|
72 |
+
tzdata==2023.3
|
73 |
+
tzlocal==5.2
|
74 |
+
urllib3==2.1.0
|
75 |
+
validators==0.22.0
|
76 |
+
watchdog==3.0.0
|
77 |
+
zipp==3.17.0
|
shows.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import ast
|
5 |
+
|
6 |
+
from func import filter_by_ganre, recommendation
|
7 |
+
|
8 |
+
|
9 |
+
|
10 |
+
"""
|
11 |
+
# Умный поиск сериалов
|
12 |
+
"""
|
13 |
+
|
14 |
+
df = pd.read_csv('dataset.csv')
|
15 |
+
embeddings = np.loadtxt('embeddings.txt')
|
16 |
+
df['ganres'] = df['ganres'].apply(lambda x: ast.literal_eval(x))
|
17 |
+
|
18 |
+
st.write(f'<p style="font-family: Arial, sans-serif; font-size: 24px; ">Количество сериалов, \
|
19 |
+
предоставляемых сервисом {len(df)}</p>', unsafe_allow_html=True)
|
20 |
+
|
21 |
+
ganres_lst = sorted(['драма', 'документальный', 'биография', 'комедия', 'фэнтези', 'приключения', 'для детей', 'мультсериалы',
|
22 |
+
'мелодрама', 'боевик', 'детектив', 'фантастика', 'триллер', 'семейный', 'криминал', 'исторический', 'музыкальные',
|
23 |
+
'мистика', 'аниме', 'ужасы', 'спорт', 'скетч-шоу', 'военный', 'для взрослых', 'вестерн'])
|
24 |
+
|
25 |
+
st.sidebar.header('Панель инструментов :gear:')
|
26 |
+
choice_g = st.sidebar.multiselect("Выберите жанры", options=ganres_lst)
|
27 |
+
n = st.sidebar.selectbox("Количество отображаемых элементов на странице", options=[5, 10, 15])
|
28 |
+
|
29 |
+
|
30 |
+
# col3, col4 = st.columns([5,2])
|
31 |
+
|
32 |
+
# with col3:
|
33 |
+
text = st.text_input('Введите описание для рекомендации')
|
34 |
+
|
35 |
+
# with col4:
|
36 |
+
|
37 |
+
button = st.button('Отправить запрос', type="primary")
|
38 |
+
|
39 |
+
if text and button:
|
40 |
+
if len(choice_g) == 0:
|
41 |
+
choice_g = ganres_lst
|
42 |
+
filtered_df = filter_by_ganre(df, choice_g)
|
43 |
+
top_dict = recommendation(filtered_df, embeddings, text)
|
44 |
+
st.write(f'<p style="font-family: Arial, sans-serif; font-size: 18px; text-align: center;"><strong>Всего подобранных \
|
45 |
+
рекомендаций {len(top_dict)}</strong></p>', unsafe_allow_html=True)
|
46 |
+
st.write('\n')
|
47 |
+
|
48 |
+
# Отображение изображений и названий
|
49 |
+
for ind, sim in enumerate(top_dict):
|
50 |
+
col1, col2 = st.columns([3, 4])
|
51 |
+
with col1:
|
52 |
+
st.image(df['poster'][ind], width=300)
|
53 |
+
with col2:
|
54 |
+
st.write(f"***Название:*** {df['title'][ind]}")
|
55 |
+
st.write(f"***Жанр:*** {', '.join(df['ganres'][ind])}")
|
56 |
+
st.write(f"***Описание:*** {df['description'][ind]}")
|
57 |
+
similarity = round(sim, 4)
|
58 |
+
st.write(f"***Cosine Similarity : {similarity}***")
|
59 |
+
st.write(f"***Ссылка на фильм : {df['url'][ind]}***")
|
60 |
+
|
61 |
+
st.markdown(
|
62 |
+
"<hr style='border: 2px solid #000; margin-top: 10px; margin-bottom: 10px;'>",
|
63 |
+
unsafe_allow_html=True
|
64 |
+
)
|
65 |
+
|
66 |
+
|
67 |
+
# streamlit run shows.py
|