RAMYASRI-39's picture
Update app.py
ba06b5c verified
raw
history blame
9.75 kB
# Importing libraries
import pandas as pd
import json
import gradio as gr
from pathlib import Path
from ragatouille import RAGPretrainedModel
from gradio_client import Client
from tempfile import NamedTemporaryFile
from sentence_transformers import CrossEncoder
import numpy as np
from time import perf_counter
from sentence_transformers import CrossEncoder
#calling functions from other files - to call the knowledge database tables (lancedb for accurate mode) for creating quiz
from backend.semantic_search import table, retriever
VECTOR_COLUMN_NAME = "vector"
TEXT_COLUMN_NAME = "text"
proj_dir = Path.cwd()
# Set up logging
import logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Replace Mixtral client with Qwen Client
client = Client("Qwen/Qwen1.5-110B-Chat-demo")
def system_instructions(question_difficulty, topic, documents_str):
return f"""<s> [INST] You are a great teacher and your task is to create 10 questions with 4 choices with {question_difficulty} difficulty about the topic request "{topic}" only from the below given documents, {documents_str}. Then create answers. Index in JSON format, the questions as "Q#":"" to "Q#":"", the four choices as "Q#:C1":"" to "Q#:C4":"", and the answers as "A#":"Q#:C#" to "A#":"Q#:C#". Example: 'A10':'Q10:C3' [/INST]"""
# Ragatouille database for Colbert ie highly accurate mode
RAG_db = gr.State()
quiz_data = None
#defining a function to convert json file to excel file
def json_to_excel(output_json):
# Initialize list for DataFrame
data = []
gr.Warning('Generating Shareable file link..', duration=30)
for i in range(1, 11): # Assuming there are 10 questions
question_key = f"Q{i}"
answer_key = f"A{i}"
question = output_json.get(question_key, '')
correct_answer_key = output_json.get(answer_key, '')
#correct_answer = correct_answer_key.split(':')[-1] if correct_answer_key else ''
correct_answer = correct_answer_key.split(':')[-1].replace('C', '').strip() if correct_answer_key else ''
# Extract options
option_keys = [f"{question_key}:C{i}" for i in range(1, 6)]
options = [output_json.get(key, '') for key in option_keys]
# Add data row
data.append([
question, # Question Text
"Multiple Choice", # Question Type
options[0], # Option 1
options[1], # Option 2
options[2] if len(options) > 2 else '', # Option 3
options[3] if len(options) > 3 else '', # Option 4
options[4] if len(options) > 4 else '', # Option 5
correct_answer, # Correct Answer
30, # Time in seconds
'' # Image Link
])
# Create DataFrame
df = pd.DataFrame(data, columns=[
"Question Text",
"Question Type",
"Option 1",
"Option 2",
"Option 3",
"Option 4",
"Option 5",
"Correct Answer",
"Time in seconds",
"Image Link"
])
temp_file = NamedTemporaryFile(delete=False, suffix=".xlsx")
df.to_excel(temp_file.name, index=False)
return temp_file.name
# Define a colorful theme
colorful_theme = gr.themes.Default(
primary_hue="cyan", # Set a bright cyan as primary color
secondary_hue="yellow", # Set a bright magenta as secondary color
neutral_hue="purple" # Optionally set a neutral color
)
#gradio app creation for a user interface
with gr.Blocks(title="Quiz Maker", theme=colorful_theme) as QUIZBOT:
# Create a single row for the HTML and Image
with gr.Row():
with gr.Column(scale=2):
gr.Image(value='logo.png', height=200, width=200)
with gr.Column(scale=6):
gr.HTML("""
<center>
<h1><span style="color: purple;">GOVERNMENT HIGH SCHOOL,SUTHUKENY</span> STUDENTS QUIZBOT </h1>
<h2>Generative AI-powered Capacity building for STUDENTS</h2>
<i>⚠️ Students can create quiz from any topic from 10 science and evaluate themselves! ⚠️</i>
</center>
""")
topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any CHAPTER NAME")
with gr.Row():
difficulty_radio = gr.Radio(["easy", "average", "hard"], label="How difficult should the quiz be?")
model_radio = gr.Radio(choices=[ '(ACCURATE) BGE reranker', '(HIGH ACCURATE) ColBERT'],
value='(ACCURATE) BGE reranker', label="Embeddings",
info="First query to ColBERT may take a little time")
generate_quiz_btn = gr.Button("Generate Quiz!🚀")
quiz_msg = gr.Textbox()
question_radios = [gr.Radio(visible=False) for _ in range(10)]
@generate_quiz_btn.click(inputs=[difficulty_radio, topic, model_radio], outputs=[quiz_msg] + question_radios + [gr.File(label="Download Excel")])
def generate_quiz(question_difficulty, topic, cross_encoder):
top_k_rank = 10
documents = []
gr.Warning('Generating Quiz may take 1-2 minutes. Please wait.', duration=60)
if cross_encoder == '(HIGH ACCURATE) ColBERT':
gr.Warning('Retrieving using ColBERT.. First-time query will take 2 minute for model to load.. please wait',duration=100)
RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
RAG_db.value = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
documents_full = RAG_db.value.search(topic, k=top_k_rank)
documents = [item['content'] for item in documents_full]
else:
document_start = perf_counter()
query_vec = retriever.encode(topic)
doc1 = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank)
documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank).to_list()
documents = [doc[TEXT_COLUMN_NAME] for doc in documents]
query_doc_pair = [[topic, doc] for doc in documents]
# if cross_encoder == '(FAST) MiniLM-L6v2':
# cross_encoder1 = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
if cross_encoder == '(ACCURATE) BGE reranker':
cross_encoder1 = CrossEncoder('BAAI/bge-reranker-base')
cross_scores = cross_encoder1.predict(query_doc_pair)
sim_scores_argsort = list(reversed(np.argsort(cross_scores)))
documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]]
#creating a text prompt to Qwen model combining the documents and system instruction
formatted_prompt = system_instructions(question_difficulty, topic, '\n'.join(documents))
print(' Formatted Prompt : ' ,formatted_prompt)
try:
response = client.predict(query=formatted_prompt, history=[], system="You are a helpful assistant.", api_name="/model_chat")
response1 = response[1][0][1]
# Extract JSON
start_index = response1.find('{')
end_index = response1.rfind('}')
cleaned_response = response1[start_index:end_index + 1] if start_index != -1 and end_index != -1 else ''
print('Cleaned Response :',cleaned_response)
output_json = json.loads(cleaned_response)
# Assign the extracted JSON to quiz_data for use in the comparison function
global quiz_data
quiz_data = output_json
# Generate the Excel file
excel_file = json_to_excel(output_json)
#Create a Quiz display in app
question_radio_list = []
for question_num in range(1, 11):
question_key = f"Q{question_num}"
answer_key = f"A{question_num}"
question = output_json.get(question_key)
answer = output_json.get(output_json.get(answer_key))
if not question or not answer:
continue
choice_keys = [f"{question_key}:C{i}" for i in range(1, 5)]
choice_list = [output_json.get(choice_key, "Choice not found") for choice_key in choice_keys]
radio = gr.Radio(choices=choice_list, label=question, visible=True, interactive=True)
question_radio_list.append(radio)
return ['Quiz Generated!'] + question_radio_list + [excel_file]
except json.JSONDecodeError as e:
print(f"Failed to decode JSON: {e}")
check_button = gr.Button("Check Score")
score_textbox = gr.Markdown()
@check_button.click(inputs=question_radios, outputs=score_textbox)
def compare_answers(*user_answers):
user_answer_list = list(user_answers)
answers_list = []
for question_num in range(1, 20):
answer_key = f"A{question_num}"
answer = quiz_data.get(quiz_data.get(answer_key))
if not answer:
break
answers_list.append(answer)
score = sum(1 for item in user_answer_list if item in answers_list)
if score > 7:
message = f"### Excellent! You got {score} out of 10!"
elif score > 5:
message = f"### Good! You got {score} out of 10!"
else:
message = f"### You got {score} out of 10! Don't worry. You can prepare well and try better next time!"
return message
QUIZBOT.queue()
QUIZBOT.launch(debug=True)