File size: 9,748 Bytes
6cb075b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a40e0f3
6cb075b
 
 
 
 
 
ba06b5c
6cb075b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e1a3c5
6cb075b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
# Importing libraries
import pandas as pd
import json
import gradio as gr
from pathlib import Path
from ragatouille import RAGPretrainedModel
from gradio_client import Client
from tempfile import NamedTemporaryFile
from sentence_transformers import CrossEncoder
import numpy as np
from time import perf_counter
from sentence_transformers import CrossEncoder

#calling functions from other files - to call the knowledge database tables (lancedb for accurate mode) for creating quiz  
from backend.semantic_search import table, retriever

VECTOR_COLUMN_NAME = "vector"
TEXT_COLUMN_NAME = "text"
proj_dir = Path.cwd()

# Set up logging
import logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Replace Mixtral client with Qwen Client
client = Client("Qwen/Qwen1.5-110B-Chat-demo")

def system_instructions(question_difficulty, topic, documents_str):
    return f"""<s> [INST] You are a great teacher and your task is to create 10 questions with 4 choices with {question_difficulty} difficulty about the topic request "{topic}" only from the below given documents, {documents_str}. Then create answers. Index in JSON format, the questions as "Q#":"" to "Q#":"", the four choices as "Q#:C1":"" to "Q#:C4":"", and the answers as "A#":"Q#:C#" to "A#":"Q#:C#". Example: 'A10':'Q10:C3' [/INST]"""

# Ragatouille database for Colbert ie highly accurate mode
RAG_db = gr.State()
quiz_data = None


#defining a function to convert json file to excel file 
def json_to_excel(output_json):
    # Initialize list for DataFrame
    data = []
    gr.Warning('Generating Shareable file link..', duration=30)
    for i in range(1, 11):  # Assuming there are 10 questions
        question_key = f"Q{i}"
        answer_key = f"A{i}"

        question = output_json.get(question_key, '')
        correct_answer_key = output_json.get(answer_key, '')
        #correct_answer = correct_answer_key.split(':')[-1] if correct_answer_key else ''
        correct_answer = correct_answer_key.split(':')[-1].replace('C', '').strip() if correct_answer_key else ''

        # Extract options
        option_keys = [f"{question_key}:C{i}" for i in range(1, 6)]
        options = [output_json.get(key, '') for key in option_keys]
        
        # Add data row
        data.append([
            question,                     # Question Text
            "Multiple Choice",            # Question Type
            options[0],                   # Option 1
            options[1],                   # Option 2
            options[2] if len(options) > 2 else '',  # Option 3
            options[3] if len(options) > 3 else '',  # Option 4
            options[4] if len(options) > 4 else '',  # Option 5
            correct_answer,               # Correct Answer
            30,                           # Time in seconds
            ''                            # Image Link
        ])

    # Create DataFrame
    df = pd.DataFrame(data, columns=[
        "Question Text",
        "Question Type",
        "Option 1",
        "Option 2",
        "Option 3",
        "Option 4",
        "Option 5",
        "Correct Answer",
        "Time in seconds",
        "Image Link"
    ])

    temp_file = NamedTemporaryFile(delete=False, suffix=".xlsx")
    df.to_excel(temp_file.name, index=False)
    return temp_file.name
# Define a colorful theme
colorful_theme = gr.themes.Default(
    primary_hue="cyan",      # Set a bright cyan as primary color
    secondary_hue="yellow", # Set a bright magenta as secondary color
    neutral_hue="purple"  # Optionally set a neutral color
        
)

#gradio app creation for a user interface 
with gr.Blocks(title="Quiz Maker", theme=colorful_theme) as QUIZBOT:
    
    
    # Create a single row for the HTML and Image
    with gr.Row():
        with gr.Column(scale=2):
            gr.Image(value='logo.png', height=200, width=200)
        with gr.Column(scale=6):
            gr.HTML("""
            <center>
                <h1><span style="color: purple;">GOVERNMENT HIGH SCHOOL,SUTHUKENY</span> STUDENTS QUIZBOT </h1>
                <h2>Generative AI-powered Capacity building for STUDENTS</h2>
                <i>⚠️ Students can create quiz from any topic from 10 science and evaluate themselves! ⚠️</i>
            </center>
            """)
        


    
    topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any CHAPTER NAME")

    with gr.Row():
        difficulty_radio = gr.Radio(["easy", "average", "hard"], label="How difficult should the quiz be?")
        model_radio = gr.Radio(choices=[ '(ACCURATE) BGE reranker', '(HIGH ACCURATE) ColBERT'], 
                               value='(ACCURATE) BGE reranker', label="Embeddings", 
                               info="First query to ColBERT may take a little time")

    generate_quiz_btn = gr.Button("Generate Quiz!🚀")
    quiz_msg = gr.Textbox()

    question_radios = [gr.Radio(visible=False) for _ in range(10)]

    @generate_quiz_btn.click(inputs=[difficulty_radio, topic, model_radio], outputs=[quiz_msg] + question_radios + [gr.File(label="Download Excel")])
    def generate_quiz(question_difficulty, topic, cross_encoder):
        top_k_rank = 10
        documents = []
        gr.Warning('Generating Quiz may take 1-2 minutes. Please wait.', duration=60)

        if cross_encoder == '(HIGH ACCURATE) ColBERT':
            gr.Warning('Retrieving using ColBERT.. First-time query will take 2 minute for model to load.. please wait',duration=100)
            RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
            RAG_db.value = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
            documents_full = RAG_db.value.search(topic, k=top_k_rank)
            documents = [item['content'] for item in documents_full]
        
        else:
            document_start = perf_counter()
            query_vec = retriever.encode(topic)
            doc1 = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank)

            documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank).to_list()
            documents = [doc[TEXT_COLUMN_NAME] for doc in documents]

            query_doc_pair = [[topic, doc] for doc in documents]

            # if cross_encoder == '(FAST) MiniLM-L6v2':
            #     cross_encoder1 = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
            if cross_encoder == '(ACCURATE) BGE reranker':
                cross_encoder1 = CrossEncoder('BAAI/bge-reranker-base')
            
            cross_scores = cross_encoder1.predict(query_doc_pair)
            sim_scores_argsort = list(reversed(np.argsort(cross_scores)))
            documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]]

        #creating a text prompt to Qwen model combining the documents and system instruction 
        formatted_prompt = system_instructions(question_difficulty, topic, '\n'.join(documents))
        print('                      Formatted Prompt : ' ,formatted_prompt)
        try:
            response = client.predict(query=formatted_prompt, history=[], system="You are a helpful assistant.", api_name="/model_chat")
            response1 = response[1][0][1]
            
            # Extract JSON
            start_index = response1.find('{')
            end_index = response1.rfind('}')
            cleaned_response = response1[start_index:end_index + 1] if start_index != -1 and end_index != -1 else ''
            print('Cleaned Response :',cleaned_response)
            output_json = json.loads(cleaned_response)
            # Assign the extracted JSON to quiz_data for use in the comparison function
            global quiz_data
            quiz_data = output_json
            # Generate the Excel file
            excel_file = json_to_excel(output_json)
            

            #Create a Quiz display in app
            question_radio_list = []
            for question_num in range(1, 11):
                question_key = f"Q{question_num}"
                answer_key = f"A{question_num}"

                question = output_json.get(question_key)
                answer = output_json.get(output_json.get(answer_key))

                if not question or not answer:
                    continue

                choice_keys = [f"{question_key}:C{i}" for i in range(1, 5)]
                choice_list = [output_json.get(choice_key, "Choice not found") for choice_key in choice_keys]

                radio = gr.Radio(choices=choice_list, label=question, visible=True, interactive=True)
                question_radio_list.append(radio)

            return ['Quiz Generated!'] + question_radio_list + [excel_file]

        except json.JSONDecodeError as e:
            print(f"Failed to decode JSON: {e}")

    check_button = gr.Button("Check Score")
    score_textbox = gr.Markdown()

    @check_button.click(inputs=question_radios, outputs=score_textbox)
    def compare_answers(*user_answers):
        user_answer_list = list(user_answers)
        answers_list = []

        for question_num in range(1, 11):
            answer_key = f"A{question_num}"
            answer = quiz_data.get(quiz_data.get(answer_key))
            if not answer:
                break
            answers_list.append(answer)

        score = sum(1 for item in user_answer_list if item in answers_list)

        if score > 7:
            message = f"### Excellent! You got {score} out of 10!"
        elif score > 5:
            message = f"### Good! You got {score} out of 10!"
        else:
            message = f"### You got {score} out of 10! Don't worry. You can prepare well and try better next time!"

        return message

QUIZBOT.queue()
QUIZBOT.launch(debug=True)