import gradio as gr import torch import spaces import torchaudio from encodec import EncodecModel from whisperspeech.vq_stoks import RQBottleneckTransformer from encodec.utils import convert_audio from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline from transformers import StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer from threading import Thread import logging import os from generate_audio import ( TTSProcessor, ) import uuid device = "cuda" if torch.cuda.is_available() else "cpu" vq_model = RQBottleneckTransformer.load_model( "whisper-vq-stoks-medium-en+pl-fixed.model" ).to(device) # vq_model.ensure_whisper(device) @spaces.GPU def audio_to_sound_tokens_whisperspeech(audio_path): wav, sr = torchaudio.load(audio_path) if sr != 16000: wav = torchaudio.functional.resample(wav, sr, 16000) with torch.no_grad(): codes = vq_model.encode_audio(wav.to(device)) codes = codes[0].cpu().tolist() result = ''.join(f'<|sound_{num:04d}|>' for num in codes) return f'<|sound_start|>{result}<|sound_end|>' @spaces.GPU def audio_to_sound_tokens_whisperspeech_transcribe(audio_path): wav, sr = torchaudio.load(audio_path) if sr != 16000: wav = torchaudio.functional.resample(wav, sr, 16000) with torch.no_grad(): codes = vq_model.encode_audio(wav.to(device)) codes = codes[0].cpu().tolist() result = ''.join(f'<|sound_{num:04d}|>' for num in codes) return f'<|reserved_special_token_69|><|sound_start|>{result}<|sound_end|>' tts = TTSProcessor(device) use_8bit = False llm_path = "homebrewltd/Llama3.1-s-instruct-2024-08-19-epoch-3" tokenizer = AutoTokenizer.from_pretrained(llm_path) model_kwargs = {"device_map": "auto"} if use_8bit: model_kwargs["quantization_config"] = BitsAndBytesConfig( load_in_8bit=True, llm_int8_enable_fp32_cpu_offload=False, llm_int8_has_fp16_weight=False, ) else: model_kwargs["torch_dtype"] = torch.bfloat16 model = AutoModelForCausalLM.from_pretrained(llm_path, **model_kwargs) pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) tokenizer = pipe.tokenizer model = pipe.model # print(tokenizer.encode("<|sound_0001|>", add_special_tokens=False))# return the audio tensor # print(tokenizer.eos_token) @spaces.GPU def text_to_audio_file(text): # gen a random id for the audio file id = str(uuid.uuid4()) temp_file = f"./user_audio/{id}_temp_audio.wav" text = text text_split = "_".join(text.lower().split(" ")) # remove the last character if it is a period if text_split[-1] == ".": text_split = text_split[:-1] tts.convert_text_to_audio_file(text, temp_file) # logging.info(f"Saving audio to {temp_file}") # torchaudio.save(temp_file, audio.cpu(), sample_rate=24000) print(f"Saved audio to {temp_file}") return temp_file @spaces.GPU def process_input(input_type, text_input=None, audio_file=None): # if input_type == "text": # audio_file = "temp_audio.wav" for partial_message in process_audio(audio_file): yield partial_message # if input_type == "text": # os.remove(audio_file) @spaces.GPU def process_transcribe_input(input_type, text_input=None, audio_file=None): # if input_type == "text": # audio_file = "temp_audio.wav" for partial_message in process_audio(audio_file, transcript=True): yield partial_message # if input_type == "text": # os.remove(audio_file) class StopOnTokens(StoppingCriteria): def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: # encode token stop_ids = [tokenizer.eos_token_id, 128009] # Adjust this based on your model's tokenizer for stop_id in stop_ids: if input_ids[0][-1] == stop_id: return True return False @spaces.GPU def process_audio(audio_file, transcript=False): if audio_file is None: raise ValueError("No audio file provided") logging.info(f"Audio file received: {audio_file}") logging.info(f"Audio file type: {type(audio_file)}") sound_tokens = audio_to_sound_tokens_whisperspeech_transcribe(audio_file) if transcript else audio_to_sound_tokens_whisperspeech(audio_file) logging.info("Sound tokens generated successfully") # logging.info(f"audio_file: {audio_file.name}") messages = [ {"role": "user", "content": sound_tokens}, ] stop = StopOnTokens() input_str = tokenizer.apply_chat_template(messages, tokenize=False) input_ids = tokenizer.encode(input_str, return_tensors="pt") input_ids = input_ids.to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) generation_kwargs = dict( input_ids=input_ids, streamer=streamer, max_new_tokens=1024, do_sample=False, stopping_criteria=StoppingCriteriaList([stop]) ) thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() partial_message = "" for new_token in streamer: partial_message += new_token if tokenizer.eos_token in partial_message: break partial_message = partial_message.replace("assistant\n\n", "") yield partial_message # def stop_generation(): # # This is a placeholder. Implement actual stopping logic here if needed. # return "Generation stopped.", gr.Button.update(interactive=False) # take all the examples from the examples folder good_examples = [] for file in os.listdir("./examples"): if file.endswith(".wav"): good_examples.append([f"./examples/{file}"]) bad_examples = [] for file in os.listdir("./bad_examples"): if file.endswith(".wav"): bad_examples.append([f"./bad_examples/{file}"]) examples = [] examples.extend(good_examples) examples.extend(bad_examples) # with gr.Blocks() as iface: # gr.Markdown("# Llama3-S: A Speech & Text Fusion Model Checkpoint from Homebrew") # gr.Markdown("Enter text or upload a .wav file to generate text based on its content.") # with gr.Row(): # input_type = gr.Radio(["text", "audio"], label="Input Type", value="audio") # text_input = gr.Textbox(label="Text Input", visible=False) # audio_input = gr.Audio(sources=["upload"], type="filepath", label="Upload audio", visible=True) # output = gr.Textbox(label="Generated Text") # submit_button = gr.Button("Submit") # input_type.change( # update_visibility, # inputs=[input_type], # outputs=[text_input, audio_input] # ) # submit_button.click( # process_input, # inputs=[input_type, text_input, audio_input], # outputs=[output] # ) # gr.Examples(examples, inputs=[audio_input]) # iface.launch(server_name="127.0.0.1", server_port=8080) with gr.Blocks() as iface: gr.Markdown("# Llama3-1-S: checkpoint Aug 19, 2024") gr.Markdown("Enter text to convert to audio, then submit the audio to generate text or Upload Audio") with gr.Row(): input_type = gr.Radio(["text", "audio"], label="Input Type", value="audio") text_input = gr.Textbox(label="Text Input", visible=False) audio_input = gr.Audio(label="Audio", type="filepath", visible=True) # audio_output = gr.Audio(label="Converted Audio", type="filepath", visible=False) convert_button = gr.Button("Convert to Audio", visible=False) submit_button = gr.Button("Submit for Processing") transcrip_button = gr.Button("Please Transcribe the audio for me") text_output = gr.Textbox(label="Generated Text") def update_visibility(input_type): return (gr.update(visible=input_type == "text"), gr.update(visible=input_type == "text")) def convert_and_display(text): audio_file = text_to_audio_file(text) return audio_file def process_example(file_path): return update_visibility("audio") input_type.change( update_visibility, inputs=[input_type], outputs=[text_input, convert_button] ) convert_button.click( convert_and_display, inputs=[text_input], outputs=[audio_input] ) submit_button.click( process_input, inputs=[input_type, text_input, audio_input], outputs=[text_output] ) transcrip_button.click( process_transcribe_input, inputs=[input_type, text_input, audio_input], outputs=[text_output] ) gr.Examples(examples, inputs=[audio_input]) iface.queue() iface.launch() # launch locally # iface.launch(server_name="0.0.0.0")