File size: 19,623 Bytes
1f5b45f 8f929eb 4fa5a46 8f929eb 9d7e9d0 8f929eb 9d7e9d0 8f929eb 9d7e9d0 4fa5a46 9d7e9d0 8f929eb 1f5b45f a7b58fc 1f5b45f 8f929eb 4fa5a46 8f929eb 7bf061b 8f929eb 4fa5a46 8f929eb 4fa5a46 1a4f438 4fa5a46 833cdfd 4fa5a46 1a4f438 4fa5a46 9d7e9d0 1d0ea67 8af2d8d 40d3e3b 9d7e9d0 4fa5a46 8f929eb a6c8b05 1f5b45f 8f929eb 1f5b45f 0140bb3 1f5b45f 0140bb3 a250386 0140bb3 1f5b45f b84fbfc 1f5b45f 0140bb3 1f5b45f a7b58fc 1f5b45f 207b503 1f5b45f 9a983e9 de5a34a 1f5b45f de0cc15 1f5b45f 8a92caf 1f5b45f 2e32e62 b84fbfc a250386 0140bb3 b84fbfc 6b8d43c 1f5b45f b84fbfc 1f5b45f b84fbfc 1f5b45f 66a359f b84fbfc b430338 1f5b45f 66a359f 8e73e1c a7b58fc 1f5b45f a0baf1a ae0888f 1f5b45f 645ee31 9a5523b 1f5b45f 2c96fb3 1ec2d3b 2c96fb3 aeee856 40a2e46 aeee856 3525221 c44bdc9 7f203ce 1ec2d3b cec3e64 c176392 bac2d1e cec3e64 6d13a49 bac2d1e 3b6be73 0b2ec20 0da2901 73c3b8d 0b2ec20 cec3e64 0b2ec20 73c3b8d 0b2ec20 b9c4dba cec3e64 0b2ec20 cec3e64 0b2ec20 cec3e64 0b2ec20 cec3e64 0b2ec20 cec3e64 0b2ec20 cec3e64 0b2ec20 bfe2402 0b2ec20 bfe2402 2325d69 0b2ec20 ccbd684 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 |
import os
import streamlit as st
from textwrap import dedent
import google.generativeai as genai
from clarifai_grpc.channel.clarifai_channel import ClarifaiChannel
from clarifai_grpc.grpc.api import resources_pb2, service_pb2, service_pb2_grpc
from clarifai_grpc.grpc.api.status.status_code_pb2 import SUCCESS
from clarifai_grpc.grpc.api.status import status_code_pb2
from PIL import Image
from io import BytesIO
from nltk.tokenize import sent_tokenize
import numpy as np
# Ensure nltk punkt tokenizer data is downloaded
import nltk
nltk.download('punkt')
# Image Variables
USER_ID_IMG = 'openai'
APP_ID_IMG = 'dall-e'
MODEL_ID_IMG = 'dall-e-3'
MODEL_VERSION_ID_IMG = 'dc9dcb6ee67543cebc0b9a025861b868'
# Audio variables
USER_ID_AUDIO = 'eleven-labs'
APP_ID_AUDIO = 'audio-generation'
MODEL_ID_AUDIO = 'speech-synthesis'
MODEL_VERSION_ID_AUDIO = 'f2cead3a965f4c419a61a4a9b501095c'
# Object Detection variables
USER_ID_OBJECT = 'clarifai'
APP_ID_OBJECT = 'main'
MODEL_ID_OBJECT = 'general-image-detection'
MODEL_VERSION_ID_OBJECT = '1580bb1932594c93b7e2e04456af7c6f'
# Vision variables
USER_ID_GPT4 = 'openai'
APP_ID_GPT4 = 'chat-completion'
MODEL_ID_GPT4 = 'openai-gpt-4-vision'
MODEL_VERSION_ID_GPT4 = '266df29bc09843e0aee9b7bf723c03c2'
# Retrieve PAT from environment variable
PAT = os.getenv('CLARIFAI_PAT')
# Tool import
from crewai.tools.gemini_tools import GeminiSearchTools
# Google Langchain
from langchain_google_genai import GoogleGenerativeAI
# Crew imports
from crewai import Agent, Task, Crew, Process
# Retrieve API Key from Environment Variable
GOOGLE_AI_STUDIO = os.environ.get('GOOGLE_API_KEY')
# Story book
# Image Creation +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
# Function to generate image using Clarifai
def generate_image(prompt):
channel = ClarifaiChannel.get_grpc_channel()
stub = service_pb2_grpc.V2Stub(channel)
metadata = (('authorization', 'Key ' + PAT),)
userDataObject = resources_pb2.UserAppIDSet(user_id=USER_ID_IMG, app_id=APP_ID_IMG)
post_model_outputs_response = stub.PostModelOutputs(
service_pb2.PostModelOutputsRequest(
user_app_id=userDataObject,
model_id=MODEL_ID_IMG,
version_id=MODEL_VERSION_ID_IMG,
inputs=[resources_pb2.Input(data=resources_pb2.Data(text=resources_pb2.Text(raw=prompt)))]
),
metadata=metadata
)
if post_model_outputs_response.status.code != SUCCESS:
return None, "Error in generating image: " + post_model_outputs_response.status.description
else:
output = post_model_outputs_response.outputs[0].data.image.base64
image = Image.open(BytesIO(output))
return image, None
# Audio Creation +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
# Function to generate audio using Clarifai
def generate_audio(prompt):
channel = ClarifaiChannel.get_grpc_channel()
stub = service_pb2_grpc.V2Stub(channel)
metadata = (('authorization', 'Key ' + PAT),)
userDataObject = resources_pb2.UserAppIDSet(user_id=USER_ID_AUDIO, app_id=APP_ID_AUDIO)
response = stub.PostModelOutputs(
service_pb2.PostModelOutputsRequest(
user_app_id=userDataObject,
model_id=MODEL_ID_AUDIO,
version_id=MODEL_VERSION_ID_AUDIO,
inputs=[resources_pb2.Input(data=resources_pb2.Data(text=resources_pb2.Text(raw=prompt)))]
),
metadata=metadata
)
if response.status.code != SUCCESS:
return None, "Error in generating audio: " + response.status.description
else:
audio_output = response.outputs[0].data.audio.base64
return audio_output, None
# Object Detection +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
# Function to call Clarifai API
def get_image_concepts(created_image):
channel = ClarifaiChannel.get_grpc_channel()
stub = service_pb2_grpc.V2Stub(channel)
buffer = BytesIO()
created_image.save(buffer, format='PNG')
image_bytes = buffer.getvalue()
metadata = (('authorization', 'Key ' + PAT),)
userDataObject = resources_pb2.UserAppIDSet(user_id=USER_ID_OBJECT, app_id=APP_ID_OBJECT)
post_model_outputs_response = stub.PostModelOutputs(
service_pb2.PostModelOutputsRequest(
user_app_id=userDataObject,
model_id=MODEL_ID_OBJECT,
version_id=MODEL_VERSION_ID_OBJECT,
inputs=[
resources_pb2.Input(
data=resources_pb2.Data(
image=resources_pb2.Image(
base64=image_bytes
)
)
)
]
),
metadata=metadata
)
if post_model_outputs_response.status.code != status_code_pb2.SUCCESS:
raise Exception("Post model outputs failed, status: " + post_model_outputs_response.status.description)
return post_model_outputs_response.outputs[0].data.regions
# GPT4 Image Description Creation +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
def analyze_image(uploaded_file):
channel = ClarifaiChannel.get_grpc_channel()
stub = service_pb2_grpc.V2Stub(channel)
metadata = (('authorization', 'Key ' + PAT),)
userDataObject = resources_pb2.UserAppIDSet(user_id=USER_ID_GPT4, app_id=APP_ID_GPT4)
try:
# bytes_data = uploaded_file.getvalue()
buffer = BytesIO()
uploaded_file.save(buffer, format='PNG')
bytes_data = buffer.getvalue()
#output = post_model_outputs_response.outputs[0].data.image.base64
#image = Image.open(BytesIO(output))
response = stub.PostModelOutputs(
service_pb2.PostModelOutputsRequest(
user_app_id=userDataObject,
model_id=MODEL_ID_GPT4,
version_id=MODEL_VERSION_ID_GPT4,
inputs=[resources_pb2.Input(data=resources_pb2.Data(image=resources_pb2.Image(base64=bytes_data)))]
),
metadata=metadata
)
if response.status.code != SUCCESS:
st.error("Error in API call: " + response.status.description)
return None
return response.outputs[0].data.text.raw
except Exception as e:
st.error(f"An error occurred: {e}")
return None
# Function to split text into sentences and then chunk them
def split_text_into_sentences_and_chunks(text, n=8):
sentences = sent_tokenize(text)
total_sentences = len(sentences)
sentences_per_chunk = max(2, total_sentences // n)
return [sentences[i:i + sentences_per_chunk] for i in range(0, total_sentences, sentences_per_chunk)]
# Ensure the API key is available
if not GOOGLE_AI_STUDIO:
st.error("API key not found. Please set the GOOGLE_AI_STUDIO environment variable.")
else:
# Set gemini_llm
gemini_llm = GoogleGenerativeAI(model="gemini-pro", google_api_key=GOOGLE_AI_STUDIO)
# Base Example with Gemini Search
TITLE1 = """<h1 align="center">Clarifai NextGen Hackathon</h1>"""
def crewai_process(research_topic):
# Define your agents with roles and goals
author = Agent(
role='Children Story Author',
goal="""Use language and style throughout that is simple, clear, and appealing to children,
including elements like repetition and rhymes. Remember to keep the story age-appropriate in both length and content.""",
backstory="""You embody the spirit of a seasoned children's story author, whose life experiences and passions are
deeply woven into the fabric of your enchanting tales.""",
verbose=True,
allow_delegation=True,
llm = gemini_llm
)
editor = Agent(
role='Children Story Editor',
goal="""You meticulously refine and elevate each manuscript, ensuring it resonates deeply with its intended audience
while preserving the author's unique voice.""",
backstory="""Growing up in a family of writers and teachers, you developed an early love for words and storytelling.
After completing your degree in English Literature, you spent several years working in a small, independent publishing
house where you honed my skills in identifying and nurturing literary talent. """,
verbose=True,
allow_delegation=True,
llm = gemini_llm
)
illustrator = Agent(
role='Children Story Illustrator',
goal="""Your primary goal is to bring children's stories to life through captivating and age-appropriate illustrations. . """,
backstory="""You have a passion for drawing and storytelling. As a child, you loved reading fairy tales and imagining vivid
worlds filled with adventure and wonder. This love for stories and art grew over the years. You realize that the true magic
happens when the words on a page were paired with enchanting illustrations. """,
verbose=True,
allow_delegation=True,
llm = gemini_llm
)
artist = Agent(
role='Storybook Illustrator',
goal="""Visually bring stories to life. Create images that complement and enhance the text,
helping to convey the story's emotions, themes, and narrative to the reader.""",
backstory="""You grew into a passionate artist with a keen eye for storytelling through visuals.
This journey began with doodles in the margins of notebooks, evolving through years of dedicated study
in graphic design and children's literature. Your career as a storybook illustrator was marked by a
tireless pursuit of a unique artistic style, one that could breathe life into tales with whimsy and heart. """,
verbose=True,
allow_delegation=False,
llm = gemini_llm,
tools=[
GeminiSearchTools.gemini_search
]
# Add tools and other optional parameters as needed
)
poet = Agent(
role='Talented Children Poet',
goal='To ignite a love for reading and writing in children. You believe poetry is a gateway to creativity and encourages children to express themselves',
backstory="""You are a talented children's poet, grew up in a small coastal town,
where her love for poetry was kindled by the sea's rhythms and her grandmother's stories.
Educated in literature, she was deeply influenced by classic children's poets and later became an elementary school teacher,
a role that highlighted the positive impact of poetry on young minds. """,
verbose=True,
allow_delegation=False,
llm = gemini_llm,
tools=[
GeminiSearchTools.gemini_search
]
)
reader = Agent(
role='Talented Voice Artist',
goal='You aim to bring children stories to life, fostering imagination and a love for storytelling in young listeners.',
backstory="""Growing up in a multilingual family, you developed a passion for languages and storytelling from a young age.
You honed your skills in theater and voice acting, inspired by the magical way stories can transport listeners to different
worlds. """,
verbose=True,
allow_delegation=False,
llm = gemini_llm,
tools=[
GeminiSearchTools.gemini_search
]
# Add tools and other optional parameters as needed
)
finalizer = Agent(
role='Sums Output Utility',
goal='Put together the final output.',
backstory="""Follows instructions """,
verbose=True,
allow_delegation=False,
llm = gemini_llm,
tools=[
GeminiSearchTools.gemini_search
]
# Add tools and other optional parameters as needed
)
# Create tasks for your agents
task1 = Task(
description=f"""Create a story about {research_topic} using the Condition complete the following 7 Steps:
Step 1 - Set the Scene: Establish the setting in a time and place that fits your topic, choosing between imaginative or realistic.
Step 2 - Introduce Characters: Present relatable main characters, including a protagonist and potentially an antagonist.
Step 3 - Establish Conflict: Define a central conflict related to the topic, designed to engage young readers.
Step 4 - Develop the Plot: Craft a series of simple, linear events showcasing the protagonist's efforts to resolve the conflict, utilizing action, dialogue, and description.
Step 5 - Build to Climax: Lead up to an exciting climax where the conflict reaches its peak.
Step 6 - Resolve the Story: Follow the climax with a resolution that provides closure, aiming for a happy or educational ending.
Step 7 - Conclude with a Moral: End with a moral or lesson linked to the story's theme.
Condition: Use language and style throughout that is simple, clear, and appealing to children, including elements like repetition and rhymes.
Remember to keep the story age-appropriate in both length and content.""",
agent=author
)
task2 = Task(
description="""Add illustration ideas""",
agent=illustrator
)
task3 = Task(
description="""Output the 7 parts of the story created by author and add a two sentence poem emphasizing the Moral of the story.
""",
agent=editor
)
task4 = Task(
description="""Summarize the author story into an image prompt.""",
agent=artist
)
task5 = Task(
description="""create a rhyming version of the story created by the author""",
agent=poet
)
task6 = Task(
description="""create a rhyming version of the story created by the author""",
agent=reader
)
task7 = Task(
description="""Output story add any necessary editor changes.""",
agent=finalizer
)
# Instantiate your crew with a sequential process
crew = Crew(
agents=[author, poet],
tasks=[task1, task5],
process=Process.sequential
)
# Get your crew to work!
result = crew.kickoff()
return result
if 'text_block' not in st.session_state:
st.session_state['text_block'] = """In the realm of kindness, Humphrey's the star,
A gentle giant, his heart beating afar.
When two little creatures lost and alone,
He showed them compassion, a love fully grown.
Humphrey the whale, so mighty and kind,
With a heart as big as the ocean, you'll find.
He spotted two friends who had quite a mishap,
A seagull and starfish, they needed a chap."""
if 'on_topic' not in st.session_state:
st.session_state['on_topic'] = 'happy children on a ship'
if 'image_paths' not in st.session_state:
st.session_state['image_paths'] = []
st.set_page_config(layout="wide")
st.markdown("<h1 style='text-align: center;'>Clarifai Story Teller</h1>", unsafe_allow_html=True)
st.markdown("<h2 style='text-align: center;'>Branching Reading Adventure</h2>", unsafe_allow_html=True)
tabs = ["Create Your Story Script", "Build Your Image-Audio Book", "Interact with Your Characters"]
# Initialize the current tab in session state
if "current_tab" not in st.session_state:
st.session_state.current_tab = tabs[0]
# Function to switch tabs
def switch_tab(tab_name):
st.session_state.current_tab = tab_name
# Create tabs
tab1, tab2, tab3 = st.tabs(tabs)
# Tab 1: Introduction
with tab1:
# Set up the Streamlit interface
col1, col2, col3 = st.columns([1, 4, 1])
with col1:
st.image('crewai/resources/whale.jpg')
with col2:
# Input for the user
input_topic = st.text_area("What Exciting Adventures Await Us", height=100, placeholder="Start Our Story...")
st.session_state['on_topic'] = input_topic
# Button to run the process
if st.button("Create a Story"):
# Run the crewai process
with st.spinner('Generating Content...'):
result = crewai_process(input_topic)
# Display the result
st.session_state['text_block'] = result
st.text_area("Output", value=result , height=300)
st.image('crewai/resources/display.jpg')
with col3:
st.image('crewai/resources/clarifai.png')
# Tab 2: Data Visualization
with tab2:
# Streamlit main page
if st.button("Generate Images and Audio"):
sentence_chunks = split_text_into_sentences_and_chunks(st.session_state.text_block , 8)
prompts = [' '.join(chunk) for chunk in sentence_chunks]
cols = st.columns(4)
with st.spinner('Generating Content...'):
for i, prompt in enumerate(prompts):
image_path, img_error = generate_image(prompt+st.session_state.on_topic )
audio, audio_error = generate_audio(prompt)
with cols[i % 4]:
if img_error:
st.error(img_error)
else:
st.session_state['image_paths'].append(image_path)
st.image(image_path, prompt, use_column_width=True)
if audio_error:
st.error(audio_error)
else:
st.audio(audio, format='audio/wav')
# Tab 3: User Input and Results
with tab3:
if 'image_paths' in st.session_state and st.session_state['image_paths']:
# Create a slider for image selection
col1, col2 = st.columns([2, 3])
with col2:
# Display the selected image
image_index = st.radio(
"Choose an image",
options=list(range(len(st.session_state['image_paths']))),
format_func=lambda x: f"Image {x + 1}"
)
st.image(st.session_state['image_paths'][image_index])
with col1:
st.header("Image Details")
st.divider()
st.subheader("Image Components")
image_conepts = get_image_concepts(st.session_state['image_paths'][image_index])
unique_names = set()
for region in image_conepts:
for concept in region.data.concepts:
name = concept.name
# Add unique names to the set
unique_names.add(name)
# Display unique names
if unique_names:
st.write(', '.join(unique_names))
else:
st.write("No unique items detected.")
st.divider()
st.subheader("Description of Our Image")
image_text_output = analyze_image(st.session_state['image_paths'][image_index])
st.write(image_text_output)
st.divider()
st.session_state['on_topic'] = image_text_output
st.header("Create a Story About This Image")
# Button for actions related to the selected image
if st.button("Create a New Story"):
st.session_state['text_block'] = crewai_process(st.session_state['on_topic'])
# switch_tab(tabs[0])
|