import os import time import spaces import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer from peft import PeftModel import gradio as gr from threading import Thread # 从环境变量中获取 Hugging Face 模型信息 HF_TOKEN = os.environ.get("HF_TOKEN", None) BASE_MODEL_ID = "Qwen/Qwen2.5-Coder-7B-Instruct" # 基础模型 LORA_MODEL_PATH = "QLWD/test-7b" # LoRA 模型路径 # 定义界面标题和描述 TITLE = "

漏洞检测 微调模型测试

" DESCRIPTION = f"""

模型: 漏洞检测 微调模型

测试基础模型 + LoRA 补丁的生成效果。

""" PLACEHOLDER = """

请输入您要分析的代码...

""" CSS = """ .duplicate-button { margin: auto !important; color: white !important; background: black !important; border-radius: 100vh !important; } h3 { text-align: center; } """ device = "cuda" # 加载tokenizer和基础模型 tokenizer = AutoTokenizer.from_pretrained( BASE_MODEL_ID, use_fast=False, trust_remote_code=True, force_download=True ) base_model = AutoModelForCausalLM.from_pretrained( BASE_MODEL_ID, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True, ignore_mismatched_sizes=True, force_download=True ) # 加载 LoRA 微调权重 model = PeftModel.from_pretrained( base_model, LORA_MODEL_PATH, torch_dtype=torch.bfloat16, device_map="auto" ) def format_chat(system_prompt, history, message): formatted_chat = f"<|im_start|>system\n{system_prompt}<|im_end|>\n" for prompt, answer in history: formatted_chat += f"<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n{answer}<|im_end|>\n" formatted_chat += f"<|im_start|>user\n{message}<|im_end|>\n<|im_start|>assistant\n" return formatted_chat @spaces.GPU() def stream_chat( message: str, history: list, system_prompt: str, temperature: float = 0.3, max_new_tokens: int = 256, top_p: float = 1.0, top_k: int = 20, repetition_penalty: float = 1.2, ): print(f'message: {message}') print(f'history: {history}') formatted_prompt = format_chat(system_prompt, history, message) inputs = tokenizer(formatted_prompt, return_tensors="pt").to(device) streamer = TextIteratorStreamer(tokenizer, timeout=5000.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( input_ids=inputs.input_ids, max_new_tokens=max_new_tokens, do_sample=False if temperature == 0 else True, top_p=top_p, top_k=top_k, temperature=temperature, repetition_penalty=repetition_penalty, streamer=streamer, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id ) with torch.no_grad(): thread = Thread(target=model.generate, kwargs=generate_kwargs) thread.start() buffer = "" for new_text in streamer: buffer += new_text if "<|endoftext|>" in buffer: yield buffer.split("<|endoftext|>")[0] break yield buffer chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER) SYSTEM_PROMPT = '''你是一位代码审计和漏洞修复专家,请仔细分析下面提供的代码,扫描并输出所有存在的漏洞和潜在的风险。每个漏洞或风险之间用分隔符 "--------" 隔开,报告内容左对齐。 从高危到低危的顺序来列出漏洞和风险,每个漏洞或风险的格式如下: - **类型**:明确描述漏洞的类型或名称(如果已经有对应名称),或潜在的风险类型(如资源泄露、边界条件问题等)。 - **风险等级**:根据漏洞或风险的严重性进行评级(如高危、中危、低危)。 - **漏洞/风险描述**:以专业的角度详细解释漏洞的技术细节和成因,或描述潜在的风险。 - **影响**:说明该漏洞或风险可能对系统、数据或用户造成的具体影响。 - **修复建议**:提供修复该漏洞或风险的具体步骤或建议(不是给出修复代码,而是修复的实现方法)。 - **漏洞所在的代码段**:给出代码中存在漏洞的具体位置和代码段(如适用)。 - **修复的代码段**:给出修复漏洞的替换代码段,以便开发者使用(如适用)。 请确保扫描并**输出所有**漏洞和风险,请确保扫描并**输出所有你能够笃定和大概率存在的**漏洞和风险。 分隔符 "--------" 用于每个漏洞或风险之间。''' with gr.Blocks(css=CSS, theme="soft") as demo: gr.HTML(TITLE) gr.HTML(DESCRIPTION) gr.DuplicateButton(value="复制此 Space 进行私有部署", elem_classes="duplicate-button") gr.ChatInterface( fn=stream_chat, chatbot=chatbot, fill_height=True, additional_inputs_accordion=gr.Accordion(label="⚙️ 参数设置", open=False, render=False), additional_inputs=[ gr.Textbox( value=SYSTEM_PROMPT, label="系统提示词", render=False, ), gr.Slider( minimum=0, maximum=1, step=0.1, value=0.1, label="Temperature", render=False, ), gr.Slider( minimum=128, maximum=8192, step=1, value=8192, label="最大生成长度", render=False, ), gr.Slider( minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="Top-p", render=False, ), gr.Slider( minimum=1, maximum=50, step=1, value=20, label="Top-k", render=False, ), gr.Slider( minimum=0.0, maximum=2.0, step=0.1, value=1.2, label="重复惩罚", render=False, ), ], examples=None, cache_examples=False, ) if __name__ == "__main__": demo.launch(share=True)