import spaces import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer from peft import PeftModel import gradio as gr from threading import Thread import os # 从环境变量中获取 Hugging Face 模型信息 HF_TOKEN = os.environ.get("HF_TOKEN", None) BASE_MODEL_ID = "Qwen/Qwen2.5-Coder-7B-Instruct" # 替换为基础模型 LORA_MODEL_PATH = "QLWD/test-7b" # 替换为 LoRA 模型仓库路径 # 定义界面标题和描述 TITLE = "

漏洞检测 微调模型测试

" DESCRIPTION = f"""

模型: 漏洞检测 微调模型

测试基础模型 + LoRA 补丁的生成效果。

""" CSS = """ .duplicate-button { margin: auto !important; color: white !important; background: black !important; border-radius: 100vh !important; } h3 { text-align: center; } """ # 加载基础模型和 LoRA 微调权重 base_model = AutoModelForCausalLM.from_pretrained(BASE_MODEL_ID, torch_dtype=torch.float16, device_map="auto", use_auth_token=HF_TOKEN) tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_ID, use_auth_token=HF_TOKEN) # 加载 LoRA 微调权重 model = PeftModel.from_pretrained(base_model, LORA_MODEL_PATH, use_auth_token=HF_TOKEN) model = model.to("cuda" if torch.cuda.is_available() else "cpu") # 定义推理函数 @spaces.GPU(duration=50) def stream_chat(message: str, history: list, temperature: float, max_new_tokens: int, top_p: float, top_k: int, penalty: float): conversation = [] # 添加系统提示,定义模型的角色 conversation.append({"role": "system", "content": '''你是一位代码审计和漏洞修复助手,请仔细分析下面提供的代码,扫描并输出所有存在的漏洞和潜在的风险。每个漏洞或风险之间用分隔符 "--------" 隔开,报告内容左对齐。 从高危到低危的顺序来列出漏洞和风险,每个漏洞或风险的格式如下: - **类型**:明确描述漏洞的类型(如SQL注入、命令注入、反序列化漏洞等),或潜在的风险类型(如资源泄露、边界条件问题等)。 - **风险等级**:根据漏洞或风险的严重性进行评级(如高危、中危、低危)。 - **漏洞/风险描述**:详细解释漏洞的技术细节和成因,或描述潜在的风险。 - **影响**:说明该漏洞或风险可能对系统、数据或用户造成的具体影响。 - **修复建议**:提供修复该漏洞或风险的具体步骤或建议(不是给出修复代码,而是修复的实现方法)。 - **漏洞所在的代码段**:给出代码中存在漏洞的具体位置和代码段(如适用)。 - **修复的代码段**:给出修复漏洞的替换代码段,以便开发者使用(如适用)。 请确保扫描并**输出所有**漏洞和风险,请确保扫描并**输出所有**漏洞和风险,包括但不限于:命令注入、SQL注入、文件操作不安全、资源泄露、异常处理缺失等。 分隔符 "--------" 用于每个漏洞或风险之间。 '''}) # 将历史对话内容添加到会话中 for prompt, answer in history: conversation.extend([{"role": "user", "content": prompt}, {"role": "漏洞zhushou", "content": answer}]) # 添加当前用户的输入到对话中 conversation.append({"role": "user", "content": message}) # 使用自定义对话模板生成 input_ids input_ids = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True) inputs = tokenizer(input_ids, return_tensors="pt").to("cuda") streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) # 设置生成参数 generate_kwargs = dict( inputs, streamer=streamer, top_k=top_k, top_p=top_p, repetition_penalty=penalty, max_new_tokens=max_new_tokens, do_sample=True, temperature=temperature, eos_token_id=[151645, 151643], ) # 启动生成线程 thread = Thread(target=model.generate, kwargs=generate_kwargs) thread.start() buffer = "" for new_text in streamer: buffer += new_text yield buffer # 定义 Gradio 界面 chatbot = gr.Chatbot(height=450) with gr.Blocks(css=CSS) as demo: gr.HTML(TITLE) gr.HTML(DESCRIPTION) gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button") gr.ChatInterface( fn=stream_chat, chatbot=chatbot, fill_height=True, additional_inputs_accordion=gr.Accordion(label="⚙️ 参数设置", open=False, render=False), additional_inputs=[ gr.Slider(minimum=0, maximum=1, step=0.1, value=0.8, label="Temperature", render=False), gr.Slider(minimum=128, maximum=4096, step=1, value=1024, label="Max new tokens", render=False), gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.8, label="top_p", render=False), gr.Slider(minimum=1, maximum=20, step=1, value=20, label="top_k", render=False), gr.Slider(minimum=0.0, maximum=2.0, step=0.1, value=1.0, label="Repetition penalty", render=False), ], cache_examples=False, ) # 启动 Gradio 应用 if __name__ == "__main__": demo.launch()