Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,15 @@
|
|
1 |
import spaces
|
2 |
import torch
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
|
|
4 |
import gradio as gr
|
|
|
5 |
import os
|
6 |
|
7 |
# 从环境变量中获取 Hugging Face 模型信息
|
8 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
9 |
BASE_MODEL_ID = "Qwen/Qwen2.5-Coder-7B-Instruct" # 替换为基础模型
|
10 |
-
LORA_MODEL_PATH = "QLWD/test-7b" # 替换为 LoRA
|
11 |
|
12 |
# 定义界面标题和描述
|
13 |
TITLE = "<h1><center>漏洞检测 微调模型测试</center></h1>"
|
@@ -32,28 +34,12 @@ text-align: center;
|
|
32 |
"""
|
33 |
|
34 |
# 加载基础模型和 LoRA 微调权重
|
35 |
-
|
36 |
-
|
37 |
|
38 |
-
#
|
39 |
-
model =
|
40 |
-
|
41 |
-
torch_dtype=torch.bfloat16, # 使用 bfloat16 提高性能
|
42 |
-
device_map="auto", # 自动分配设备
|
43 |
-
use_auth_token=HF_TOKEN
|
44 |
-
)
|
45 |
-
|
46 |
-
# 加载微调权重
|
47 |
-
model = AutoModelForCausalLM.from_pretrained(
|
48 |
-
lora_model_name,
|
49 |
-
torch_dtype=torch.bfloat16, # 同样使用 bfloat16 提高性能
|
50 |
-
device_map="auto", # 自动分配设备
|
51 |
-
use_auth_token=HF_TOKEN,
|
52 |
-
trust_remote_code=True # 如果远程代码需要自定义加载逻辑
|
53 |
-
)
|
54 |
-
|
55 |
-
# 加载分词器
|
56 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=HF_TOKEN)
|
57 |
|
58 |
# 定义推理函数
|
59 |
@spaces.GPU(duration=50)
|
@@ -76,15 +62,16 @@ def stream_chat(message: str, history: list, temperature: float, max_new_tokens:
|
|
76 |
|
77 |
# 将历史对话内容添加到会话中
|
78 |
for prompt, answer in history:
|
79 |
-
conversation.extend([{"role": "user", "content": prompt}, {"role": "
|
80 |
|
81 |
# 添加当前用户的输入到对话中
|
82 |
conversation.append({"role": "user", "content": message})
|
83 |
|
84 |
# 使用自定义对话模板生成 input_ids
|
85 |
input_ids = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
|
|
|
86 |
inputs = tokenizer(input_ids, return_tensors="pt").to("cuda")
|
87 |
-
|
88 |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
89 |
|
90 |
# 设置生成参数
|
@@ -100,9 +87,12 @@ def stream_chat(message: str, history: list, temperature: float, max_new_tokens:
|
|
100 |
eos_token_id=[151645, 151643],
|
101 |
)
|
102 |
|
103 |
-
#
|
|
|
|
|
|
|
104 |
buffer = ""
|
105 |
-
for new_text in
|
106 |
buffer += new_text
|
107 |
yield buffer
|
108 |
|
@@ -132,3 +122,4 @@ with gr.Blocks(css=CSS) as demo:
|
|
132 |
# 启动 Gradio 应用
|
133 |
if __name__ == "__main__":
|
134 |
demo.launch()
|
|
|
|
1 |
import spaces
|
2 |
import torch
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
4 |
+
from peft import PeftModel
|
5 |
import gradio as gr
|
6 |
+
from threading import Thread
|
7 |
import os
|
8 |
|
9 |
# 从环境变量中获取 Hugging Face 模型信息
|
10 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
11 |
BASE_MODEL_ID = "Qwen/Qwen2.5-Coder-7B-Instruct" # 替换为基础模型
|
12 |
+
LORA_MODEL_PATH = "QLWD/test-7b" # 替换为 LoRA 模型仓库路径
|
13 |
|
14 |
# 定义界面标题和描述
|
15 |
TITLE = "<h1><center>漏洞检测 微调模型测试</center></h1>"
|
|
|
34 |
"""
|
35 |
|
36 |
# 加载基础模型和 LoRA 微调权重
|
37 |
+
base_model = AutoModelForCausalLM.from_pretrained(BASE_MODEL_ID, torch_dtype=torch.float16, device_map="auto", use_auth_token=HF_TOKEN)
|
38 |
+
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_ID, use_auth_token=HF_TOKEN)
|
39 |
|
40 |
+
# 加载 LoRA 微调权重
|
41 |
+
model = PeftModel.from_pretrained(base_model, LORA_MODEL_PATH, use_auth_token=HF_TOKEN)
|
42 |
+
model = model.to("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
# 定义推理函数
|
45 |
@spaces.GPU(duration=50)
|
|
|
62 |
|
63 |
# 将历史对话内容添加到会话中
|
64 |
for prompt, answer in history:
|
65 |
+
conversation.extend([{"role": "user", "content": prompt}, {"role": "漏洞助手", "content": answer}])
|
66 |
|
67 |
# 添加当前用户的输入到对话中
|
68 |
conversation.append({"role": "user", "content": message})
|
69 |
|
70 |
# 使用自定义对话模板生成 input_ids
|
71 |
input_ids = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
|
72 |
+
print("123")
|
73 |
inputs = tokenizer(input_ids, return_tensors="pt").to("cuda")
|
74 |
+
print("321")
|
75 |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
76 |
|
77 |
# 设置生成参数
|
|
|
87 |
eos_token_id=[151645, 151643],
|
88 |
)
|
89 |
|
90 |
+
# 启动生成线程
|
91 |
+
thread = Thread(target=model.generate, kwargs=generate_kwargs)
|
92 |
+
thread.start()
|
93 |
+
|
94 |
buffer = ""
|
95 |
+
for new_text in streamer:
|
96 |
buffer += new_text
|
97 |
yield buffer
|
98 |
|
|
|
122 |
# 启动 Gradio 应用
|
123 |
if __name__ == "__main__":
|
124 |
demo.launch()
|
125 |
+
|