Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
from peft import PeftModel | |
import gradio as gr | |
from threading import Thread | |
import spaces | |
import os | |
# 从环境变量中获取 Hugging Face 模型信息 | |
HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
BASE_MODEL_ID = "Qwen/Qwen2.5-Coder-7B-Instruct" # 替换为基础模型 | |
LORA_MODEL_PATH = "QLWD/test-7b" # 替换为 LoRA 模型仓库路径 | |
# 定义界面标题和描述 | |
TITLE = "<h1><center>漏洞检测 微调模型测试</center></h1>" | |
DESCRIPTION = f""" | |
<h3>模型: <a href="https://huggingface.co/{LORA_MODEL_PATH}">漏洞检测 微调模型</a></h3> | |
<center> | |
<p>测试基础模型 + LoRA 补丁的生成效果。</p> | |
</center> | |
""" | |
CSS = """ | |
.duplicate-button { | |
margin: auto !important; | |
color: white !important; | |
background: black !important; | |
border-radius: 100vh !important; | |
} | |
h3 { | |
text-align: center; | |
} | |
""" | |
# 加载基础模型和 LoRA 微调权重 | |
base_model = AutoModelForCausalLM.from_pretrained(BASE_MODEL_ID, torch_dtype=torch.float16, device_map="auto", use_auth_token=HF_TOKEN) | |
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_ID, use_auth_token=HF_TOKEN) | |
# 加载 LoRA 微调权重 | |
model = PeftModel.from_pretrained(base_model, LORA_MODEL_PATH, use_auth_token=HF_TOKEN) | |
model = model.to("cuda" if torch.cuda.is_available() else "cpu") | |
# 定义推理函数 | |
def stream_chat(message: str, history: list, temperature: float, max_new_tokens: int, top_p: float, top_k: int, penalty: float): | |
conversation = [] | |
# 添加系统提示,定义模型的角色 | |
conversation.append({"role": "system", "content": '''你是一位代码审计和漏洞修复助手,请仔细分析下面提供的代码,扫描并输出所有存在的漏洞和潜在的风险。每个漏洞或风险之间用分隔符 "--------" 隔开,报告内容左对齐。 | |
从高危到低危的顺序来列出漏洞和风险,每个漏洞或风险的格式如下: | |
- **类型**:明确描述漏洞的类型(如SQL注入、命令注入、反序列化漏洞等),或潜在的风险类型(如资源泄露、边界条件问题等)。 | |
- **风险等级**:根据漏洞或风险的严重性进行评级(如高危、中危、低危)。 | |
- **漏洞/风险描述**:详细解释漏洞的技术细节和成因,或描述潜在的风险。 | |
- **影响**:说明该漏洞或风险可能对系统、数据或用户造成的具体影响。 | |
- **修复建议**:提供修复该漏洞或风险的具体步骤或建议(不是给出修复代码,而是修复的实现方法)。 | |
- **漏洞所在的代码段**:给出代码中存在漏洞的具体位置和代码段(如适用)。 | |
- **修复的代码段**:给出修复漏洞的替换代码段,以便开发者使用(如适用)。 | |
请确保扫描并**输出所有**漏洞和风险,请确保扫描并**输出所有**漏洞和风险,包括但不限于:命令注入、SQL注入、文件操作不安全、资源泄露、异常处理缺失等。 | |
分隔符 "--------" 用于每个漏洞或风险之间。 | |
'''}) | |
# 将历史对话内容添加到会话中 | |
for prompt, answer in history: | |
conversation.extend([{"role": "user", "content": prompt}, {"role": "漏洞zhushou", "content": answer}]) | |
# 添加当前用户的输入到对话中 | |
conversation.append({"role": "user", "content": message}) | |
# 使用自定义对话模板生成 input_ids | |
input_ids = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True) | |
inputs = tokenizer(input_ids, return_tensors="pt").to("cuda") | |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) | |
# 设置生成参数 | |
generate_kwargs = dict( | |
inputs, | |
streamer=streamer, | |
top_k=top_k, | |
top_p=top_p, | |
repetition_penalty=penalty, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
temperature=temperature, | |
eos_token_id=[151645, 151643], | |
) | |
# 启动生成线程 | |
thread = Thread(target=model.generate, kwargs=generate_kwargs) | |
thread.start() | |
buffer = "" | |
for new_text in streamer: | |
buffer += new_text | |
yield buffer | |
# 定义 Gradio 界面 | |
chatbot = gr.Chatbot(height=450) | |
with gr.Blocks(css=CSS) as demo: | |
gr.HTML(TITLE) | |
gr.HTML(DESCRIPTION) | |
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button") | |
gr.ChatInterface( | |
fn=stream_chat, | |
chatbot=chatbot, | |
fill_height=True, | |
additional_inputs_accordion=gr.Accordion(label="⚙️ 参数设置", open=False, render=False), | |
additional_inputs=[ | |
gr.Slider(minimum=0, maximum=1, step=0.1, value=0.8, label="Temperature", render=False), | |
gr.Slider(minimum=128, maximum=4096, step=1, value=1024, label="Max new tokens", render=False), | |
gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.8, label="top_p", render=False), | |
gr.Slider(minimum=1, maximum=20, step=1, value=20, label="top_k", render=False), | |
gr.Slider(minimum=0.0, maximum=2.0, step=0.1, value=1.0, label="Repetition penalty", render=False), | |
], | |
cache_examples=False, | |
) | |
# 启动 Gradio 应用 | |
if __name__ == "__main__": | |
demo.launch() |