MaxGit32 commited on
Commit
8848678
·
1 Parent(s): 8171d78

Update pages/llm.py

Browse files
Files changed (1) hide show
  1. pages/llm.py +9 -9
pages/llm.py CHANGED
@@ -7,8 +7,8 @@ import os
7
  from PyPDF2 import PdfReader
8
  from transformers import pipeline
9
  from transformers import AutoModel
10
- from googletrans import Translator
11
- from transformers import *
12
 
13
 
14
  ###########
@@ -22,7 +22,7 @@ from transformers import *
22
 
23
  # PDF in String umwandeln
24
  def get_pdf_text(folder_path):
25
- translator = Translator()
26
  text = ""
27
  # Durchsuche alle Dateien im angegebenen Verzeichnis
28
  for filename in os.listdir(folder_path):
@@ -34,9 +34,9 @@ def get_pdf_text(folder_path):
34
  for page in pdf_reader.pages:
35
  text += page.extract_text()
36
  #text += '\n'
37
- text=text.replace("\n", " ")
38
- text=text.replace("- ", "")
39
- return translator.translate(text, dest ='en').text
40
 
41
  #Chunks erstellen
42
  def get_text_chunks(text):
@@ -81,8 +81,8 @@ def get_llm_answer(user_question):
81
  #user_question = st.text_area("Stell mir eine Frage: ")
82
  #if os.path.exists("./Store"): #Nutzereingabe nur eingelesen, wenn vectorstore angelegt
83
  # Retriever sucht passende Textausschnitte in den PDFs (unformatiert)
84
- translator = Translator()
85
- translator.translate(user_question, dest='en')
86
  retriever=get_vectorstore().as_retriever()
87
  retrieved_docs=retriever.invoke(
88
  user_question
@@ -99,7 +99,7 @@ def get_llm_answer(user_question):
99
  # Frage beantworten mit Q&A Pipeline
100
  answer = qa_pipeline(question=user_question, context=context, max_length=200)
101
 
102
- return translator.translate(answer["answer"],dest='de')
103
 
104
  def main():
105
  st.set_page_config(
 
7
  from PyPDF2 import PdfReader
8
  from transformers import pipeline
9
  from transformers import AutoModel
10
+ #from googletrans import Translator
11
+ #from transformers import *
12
 
13
 
14
  ###########
 
22
 
23
  # PDF in String umwandeln
24
  def get_pdf_text(folder_path):
25
+ #translator = Translator()
26
  text = ""
27
  # Durchsuche alle Dateien im angegebenen Verzeichnis
28
  for filename in os.listdir(folder_path):
 
34
  for page in pdf_reader.pages:
35
  text += page.extract_text()
36
  #text += '\n'
37
+ #text=text.replace("\n", " ")
38
+ #text=text.replace("- ", "")
39
+ return text#translator.translate(text, dest ='en').text
40
 
41
  #Chunks erstellen
42
  def get_text_chunks(text):
 
81
  #user_question = st.text_area("Stell mir eine Frage: ")
82
  #if os.path.exists("./Store"): #Nutzereingabe nur eingelesen, wenn vectorstore angelegt
83
  # Retriever sucht passende Textausschnitte in den PDFs (unformatiert)
84
+ #translator = Translator()
85
+ #translator.translate(user_question, dest='en')
86
  retriever=get_vectorstore().as_retriever()
87
  retrieved_docs=retriever.invoke(
88
  user_question
 
99
  # Frage beantworten mit Q&A Pipeline
100
  answer = qa_pipeline(question=user_question, context=context, max_length=200)
101
 
102
+ return answer["answer"]#translator.translate(answer["answer"],dest='de')
103
 
104
  def main():
105
  st.set_page_config(