MaxGit32's picture
Update pages/llm.py
ebec180
import streamlit as st
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.vectorstores import FAISS
from langchain.text_splitter import CharacterTextSplitter
from langchain.document_loaders import DirectoryLoader, PyPDFLoader
import os
from PyPDF2 import PdfReader
from transformers import pipeline
from transformers import AutoModel
#from googletrans import Translator
#from transformers import *
###########
#pip install faiss-cpu
#pip install langchain
#pip install pypdf
#pip tiktoken
#pip install InstructorEmbedding
###############
# PDF in String umwandeln
def get_pdf_text(folder_path):
#translator = Translator()
text = ""
# Durchsuche alle Dateien im angegebenen Verzeichnis
for filename in os.listdir(folder_path):
filepath = os.path.join(folder_path, filename)
# Überprüfe, ob die Datei die Erweiterung ".pdf" hat
if os.path.isfile(filepath) and filename.lower().endswith(".pdf"):
pdf_reader = PdfReader(filepath)
for page in pdf_reader.pages:
text += page.extract_text()
#text += '\n'
text=text.replace("\n", " ")
text=text.replace("- ", "")
#text = translator.translate(text, dest ='en').text
st.text(text)
return text
#Chunks erstellen
def get_text_chunks(text):
#Arbeitsweise Textsplitter definieren
text_splitter = CharacterTextSplitter(
separator="\n",
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
chunks = text_splitter.split_text(text)
return chunks
# nur zum Anlegen des lokalen Verzeichnisses "Store" und speichern der Vektor-Datenbank
def create_vectorstore_and_store():
folder_path = './files'
pdf_text = get_pdf_text(folder_path)
text_chunks = get_text_chunks(pdf_text)
embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-base")
#embeddings = HuggingFaceInstructEmbeddings(model_name="aari1995/German_Semantic_STS_V2")
# Initiate Faiss DB
vectorstoreDB = FAISS.from_texts(texts=text_chunks,embedding=embeddings)#texts=text_chunks,
# Verzeichnis in dem die VektorDB gespeichert werden soll
save_directory = "Store"
#VektorDB lokal speichern
vectorstoreDB.save_local(save_directory)
return None
########
def get_vectorstore():
embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-base")
#embeddings = HuggingFaceInstructEmbeddings(model_name="aari1995/German_Semantic_STS_V2")
#Abruf lokaler Vektordatenbank
save_directory = "Store"
vectorstoreDB = FAISS.load_local(save_directory, embeddings)
return vectorstoreDB
def get_llm_answer(user_question):
#if os.path.exists("./Store"): #Nutzereingabe nur eingelesen, wenn vectorstore angelegt
#user_question = st.text_area("Stell mir eine Frage: ")
#if os.path.exists("./Store"): #Nutzereingabe nur eingelesen, wenn vectorstore angelegt
# Retriever sucht passende Textausschnitte in den PDFs (unformatiert)
#translator = Translator()
#translator.translate(user_question, dest='en')
retriever=get_vectorstore().as_retriever()
retrieved_docs=retriever.invoke(
user_question
)
# Top 3 Suchergebnisse des Retrievers als Context speichern
context=""+retrieved_docs[0].page_content+retrieved_docs[1].page_content+retrieved_docs[2].page_content
# Context bereinigen
#context=context.replace("\n", " ")
#context=context.replace("- ", "")
# Erstelle die Question Answering-Pipeline für Deutsch
#qa_pipeline = pipeline("question-answering", model="deutsche-telekom/bert-multi-english-german-squad2", tokenizer="deutsche-telekom/bert-multi-english-german-squad2")
# Frage beantworten mit Q&A Pipeline
#answer = qa_pipeline(question=user_question, context=context, max_length=200)
#antw = translator.translate(answer["answer"],dest='de')
return content#answer["answer"]#antw
def main():
st.set_page_config(
page_title="Chatbot",
layout="wide",
initial_sidebar_state="expanded",
)
st.text("Chatbot Rene ist über Telegram erreichbar!")
if __name__ == '__main__':
main()