Spaces:
Sleeping
Sleeping
Praveen0309
commited on
Commit
·
0bcbf99
1
Parent(s):
4ad9e0d
Application1
Browse files- requirements.txt +31 -0
- try3.py +115 -0
requirements.txt
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accelerate==0.29.3
|
2 |
+
beautifulsoup4==4.12.3
|
3 |
+
bitsandbytes==0.42.0
|
4 |
+
certifi==2024.2.2
|
5 |
+
charset-normalizer==3.3.2
|
6 |
+
deep-translator==1.11.4
|
7 |
+
filelock==3.14.0
|
8 |
+
fsspec==2024.3.1
|
9 |
+
huggingface-hub==0.22.2
|
10 |
+
idna==3.7
|
11 |
+
Jinja2==3.1.3
|
12 |
+
MarkupSafe==2.1.5
|
13 |
+
mpmath==1.3.0
|
14 |
+
networkx==3.2.1
|
15 |
+
numpy==1.26.4
|
16 |
+
packaging==24.0
|
17 |
+
peft==0.10.0
|
18 |
+
psutil==5.9.8
|
19 |
+
PyYAML==6.0.1
|
20 |
+
regex==2024.4.28
|
21 |
+
requests==2.31.0
|
22 |
+
safetensors==0.4.3
|
23 |
+
scipy==1.13.0
|
24 |
+
soupsieve==2.5
|
25 |
+
sympy==1.12
|
26 |
+
tokenizers==0.19.1
|
27 |
+
torch==2.2.2
|
28 |
+
tqdm==4.66.2
|
29 |
+
transformers==4.40.1
|
30 |
+
typing_extensions==4.11.0
|
31 |
+
urllib3==2.2.1
|
try3.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""Untitled1.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1vA1O3q8yuzV8Hi3O8LhNuLGWS18yVEkb
|
8 |
+
"""
|
9 |
+
|
10 |
+
import streamlit as st
|
11 |
+
import PIL.Image
|
12 |
+
import base64
|
13 |
+
import time
|
14 |
+
import os
|
15 |
+
import torch
|
16 |
+
from transformers import AutoProcessor, LlavaForConditionalGeneration, BitsAndBytesConfig
|
17 |
+
from peft import PeftModel
|
18 |
+
from deep_translator import GoogleTranslator
|
19 |
+
|
20 |
+
|
21 |
+
@st.cache_resource
|
22 |
+
def load_model():
|
23 |
+
model_id = "HuggingFaceH4/vsft-llava-1.5-7b-hf-trl"
|
24 |
+
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
|
25 |
+
base_model = LlavaForConditionalGeneration.from_pretrained(model_id, quantization_config=quantization_config, torch_dtype=torch.float16)
|
26 |
+
|
27 |
+
# Load the PEFT Lora adapter
|
28 |
+
peft_lora_adapter_path = "Praveen0309/llava-1.5-7b-hf-ft-mix-vsft-3"
|
29 |
+
peft_lora_adapter = PeftModel.from_pretrained(base_model, peft_lora_adapter_path, adapter_name="lora_adapter")
|
30 |
+
base_model.load_adapter(peft_lora_adapter_path, adapter_name="lora_adapter")
|
31 |
+
|
32 |
+
processor = AutoProcessor.from_pretrained("HuggingFaceH4/vsft-llava-1.5-7b-hf-trl")
|
33 |
+
|
34 |
+
return base_model, processor
|
35 |
+
|
36 |
+
base_model, processor = load_model()
|
37 |
+
|
38 |
+
# Function to translate text from Bengali to English
|
39 |
+
def deep_translator_bn_en(input_sentence):
|
40 |
+
english_translation = GoogleTranslator(source="bn", target="en").translate(input_sentence)
|
41 |
+
return english_translation
|
42 |
+
|
43 |
+
# Function to translate text from English to Bengali
|
44 |
+
def deep_translator_en_bn(input_sentence):
|
45 |
+
bengali_translation = GoogleTranslator(source="en", target="bn").translate(input_sentence)
|
46 |
+
return bengali_translation
|
47 |
+
|
48 |
+
def inference(image, image_prompt):
|
49 |
+
prompt = f"USER: <image>\n{image_prompt} ASSISTANT:"
|
50 |
+
|
51 |
+
# Assuming your model can handle PIL images
|
52 |
+
image = image.convert("RGB") # Ensure image is RGB mode
|
53 |
+
|
54 |
+
inputs = processor(text=prompt, images=image, return_tensors="pt")
|
55 |
+
generate_ids = base_model.generate(**inputs, max_new_tokens=15)
|
56 |
+
decoded_response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
57 |
+
return decoded_response
|
58 |
+
|
59 |
+
def image_to_base64(image_path):
|
60 |
+
with open(image_path, 'rb') as img:
|
61 |
+
encoded_string = base64.b64encode(img.read())
|
62 |
+
return encoded_string.decode('utf-8')
|
63 |
+
|
64 |
+
# Function that takes User Inputs and displays it on ChatUI
|
65 |
+
def query_message(history,txt,img):
|
66 |
+
image_prompt = deep_translator_bn_en(txt)
|
67 |
+
history += [(image_prompt,None)]
|
68 |
+
base64 = image_to_base64(img)
|
69 |
+
data_url = f"data:image/jpeg;base64,{base64}"
|
70 |
+
history += [(f"{image_prompt} ![]({data_url})", None)]
|
71 |
+
return history
|
72 |
+
|
73 |
+
# Function that takes User Inputs, generates Response and displays on Chat UI
|
74 |
+
def llm_response(history,text,img):
|
75 |
+
image_prompt = deep_translator_bn_en(text)
|
76 |
+
response = inference(img,image_prompt)
|
77 |
+
assistant_index = response.find("ASSISTANT:")
|
78 |
+
extracted_string = response[assistant_index + len("ASSISTANT:"):].strip()
|
79 |
+
output = deep_translator_en_bn(extracted_string)
|
80 |
+
history += [(text,output)]
|
81 |
+
return history
|
82 |
+
|
83 |
+
# Interface Code
|
84 |
+
st.title('My_BoT')
|
85 |
+
|
86 |
+
# Create a sidebar
|
87 |
+
sidebar = st.sidebar
|
88 |
+
sidebar.header('User Inputs')
|
89 |
+
|
90 |
+
# Add a file uploader to the sidebar
|
91 |
+
uploaded_file = sidebar.file_uploader("Upload an Image", type=['png', 'jpg', 'jpeg'])
|
92 |
+
|
93 |
+
# Add a text input to the sidebar
|
94 |
+
text_input = sidebar.text_input("Enter text and press enter")
|
95 |
+
|
96 |
+
# Initialize session state for history if it doesn't exist
|
97 |
+
if 'history' not in st.session_state:
|
98 |
+
st.session_state.history = []
|
99 |
+
|
100 |
+
# Check if text is entered and no image is uploaded
|
101 |
+
if text_input and uploaded_file is None:
|
102 |
+
st.write("Please upload an image.")
|
103 |
+
|
104 |
+
# Add a button to the sidebar
|
105 |
+
submit_button = sidebar.button("Submit")
|
106 |
+
|
107 |
+
# When the button is clicked, generate the response and display it
|
108 |
+
if submit_button:
|
109 |
+
if uploaded_file is not None:
|
110 |
+
image = PIL.Image.open(uploaded_file)
|
111 |
+
st.session_state.history = llm_response(st.session_state.history, text_input, image)
|
112 |
+
for text, output in st.session_state.history:
|
113 |
+
st.write(f"User: {text}")
|
114 |
+
if output is not None:
|
115 |
+
st.write(f"Assistant: {output}")
|