Spaces:
Sleeping
Sleeping
# -*- coding: utf-8 -*- | |
"""Untitled1.ipynb | |
Automatically generated by Colab. | |
Original file is located at | |
https://colab.research.google.com/drive/1vA1O3q8yuzV8Hi3O8LhNuLGWS18yVEkb | |
""" | |
import streamlit as st | |
import PIL.Image | |
import base64 | |
import time | |
import os | |
import torch | |
from transformers import AutoProcessor, LlavaForConditionalGeneration, BitsAndBytesConfig | |
from peft import PeftModel | |
from deep_translator import GoogleTranslator | |
def load_model(): | |
model_id = "HuggingFaceH4/vsft-llava-1.5-7b-hf-trl" | |
quantization_config = BitsAndBytesConfig(load_in_4bit=True) | |
base_model = LlavaForConditionalGeneration.from_pretrained(model_id, quantization_config=quantization_config, torch_dtype=torch.float16) | |
# Load the PEFT Lora adapter | |
peft_lora_adapter_path = "Praveen0309/llava-1.5-7b-hf-ft-mix-vsft-3" | |
peft_lora_adapter = PeftModel.from_pretrained(base_model, peft_lora_adapter_path, adapter_name="lora_adapter") | |
base_model.load_adapter(peft_lora_adapter_path, adapter_name="lora_adapter") | |
processor = AutoProcessor.from_pretrained("HuggingFaceH4/vsft-llava-1.5-7b-hf-trl") | |
return base_model, processor | |
base_model, processor = load_model() | |
# Function to translate text from Bengali to English | |
def deep_translator_bn_en(input_sentence): | |
english_translation = GoogleTranslator(source="bn", target="en").translate(input_sentence) | |
return english_translation | |
# Function to translate text from English to Bengali | |
def deep_translator_en_bn(input_sentence): | |
bengali_translation = GoogleTranslator(source="en", target="bn").translate(input_sentence) | |
return bengali_translation | |
def inference(image, image_prompt): | |
prompt = f"USER: <image>\n{image_prompt} ASSISTANT:" | |
# Assuming your model can handle PIL images | |
image = image.convert("RGB") # Ensure image is RGB mode | |
inputs = processor(text=prompt, images=image, return_tensors="pt") | |
generate_ids = base_model.generate(**inputs, max_new_tokens=1024) | |
decoded_response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | |
return decoded_response | |
def image_to_base64(image_path): | |
with open(image_path, 'rb') as img: | |
encoded_string = base64.b64encode(img.read()) | |
return encoded_string.decode('utf-8') | |
# Function that takes User Inputs and displays it on ChatUI | |
def query_message(history,txt,img): | |
image_prompt = deep_translator_bn_en(txt) | |
history += [(image_prompt,None)] | |
base64 = image_to_base64(img) | |
data_url = f"data:image/jpeg;base64,{base64}" | |
history += [(f"{image_prompt} ![]({data_url})", None)] | |
return history | |
# Function that takes User Inputs, generates Response and displays on Chat UI | |
def llm_response(history,text,img): | |
image_prompt = deep_translator_bn_en(text) | |
response = inference(img,image_prompt) | |
assistant_index = response.find("ASSISTANT:") | |
extracted_string = response[assistant_index + len("ASSISTANT:"):].strip() | |
output = deep_translator_en_bn(extracted_string) | |
history += [(text,output)] | |
return history | |
# Interface Code | |
st.title('My_BoT') | |
# Create a sidebar | |
sidebar = st.sidebar | |
sidebar.header('User Inputs') | |
# Add a file uploader to the sidebar | |
uploaded_file = sidebar.file_uploader("Upload an Image", type=['png', 'jpg', 'jpeg']) | |
# Add a text input to the sidebar | |
text_input = sidebar.text_input("Enter text and press enter") | |
# Initialize session state for history if it doesn't exist | |
if 'history' not in st.session_state: | |
st.session_state.history = [] | |
# Check if text is entered and no image is uploaded | |
if text_input and uploaded_file is None: | |
st.write("Please upload an image.") | |
# Add a button to the sidebar | |
submit_button = sidebar.button("Submit") | |
# When the button is clicked, generate the response and display it | |
if submit_button: | |
if uploaded_file is not None: | |
image = PIL.Image.open(uploaded_file) | |
st.session_state.history = llm_response(st.session_state.history, text_input, image) | |
for text, output in st.session_state.history: | |
st.write(f"User: {text}") | |
if output is not None: | |
st.write(f"Assistant: {output}") |