Spaces:
Runtime error
Runtime error
File size: 24,396 Bytes
337965d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 |
# Copyright 2020 Erik Härkönen. All rights reserved.
# This file is licensed to you under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License. You may obtain a copy
# of the License at http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software distributed under
# the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS
# OF ANY KIND, either express or implied. See the License for the specific language
# governing permissions and limitations under the License.
# An interactive glumpy (OpenGL) + tkinter viewer for interacting with principal components.
# Requires OpenGL and CUDA support for rendering.
import torch
import numpy as np
import tkinter as tk
from tkinter import ttk
from types import SimpleNamespace
import matplotlib.pyplot as plt
from pathlib import Path
from os import makedirs
from models import get_instrumented_model
from config import Config
from decomposition import get_or_compute
from torch.nn.functional import interpolate
from TkTorchWindow import TorchImageView
from functools import partial
from platform import system
from PIL import Image
from utils import pad_frames, prettify_name
import pickle
# For platform specific UI tweaks
is_windows = 'Windows' in system()
is_linux = 'Linux' in system()
is_mac = 'Darwin' in system()
# Read input parameters
args = Config().from_args()
# Don't bother without GPU
assert torch.cuda.is_available(), 'Interactive mode requires CUDA'
# Use syntax from paper
def get_edit_name(idx, s, e, name=None):
return 'E({comp}, {edit_range}){edit_name}'.format(
comp = idx,
edit_range = f'{s}-{e}' if e > s else s,
edit_name = f': {name}' if name else ''
)
# Load or compute PCA basis vectors
def load_components(class_name, inst):
global components, state, use_named_latents
config = args.from_dict({ 'output_class': class_name })
dump_name = get_or_compute(config, inst)
data = np.load(dump_name, allow_pickle=False)
X_comp = data['act_comp']
X_mean = data['act_mean']
X_stdev = data['act_stdev']
Z_comp = data['lat_comp']
Z_mean = data['lat_mean']
Z_stdev = data['lat_stdev']
random_stdev_act = np.mean(data['random_stdevs'])
n_comp = X_comp.shape[0]
data.close()
# Transfer to GPU
components = SimpleNamespace(
X_comp = torch.from_numpy(X_comp).cuda().float(),
X_mean = torch.from_numpy(X_mean).cuda().float(),
X_stdev = torch.from_numpy(X_stdev).cuda().float(),
Z_comp = torch.from_numpy(Z_comp).cuda().float(),
Z_stdev = torch.from_numpy(Z_stdev).cuda().float(),
Z_mean = torch.from_numpy(Z_mean).cuda().float(),
names = [f'Component {i}' for i in range(n_comp)],
latent_types = [model.latent_space_name()]*n_comp,
ranges = [(0, model.get_max_latents())]*n_comp,
)
state.component_class = class_name # invalidates cache
use_named_latents = False
print('Loaded components for', class_name, 'from', dump_name)
# Load previously exported named components from
# directory specified with '--inputs=path/to/comp'
def load_named_components(path, class_name):
global components, state, use_named_latents
import glob
matches = glob.glob(f'{path}/*.pkl')
selected = []
for dump_path in matches:
with open(dump_path, 'rb') as f:
data = pickle.load(f)
if data['model_name'] != model_name or data['output_class'] != class_name:
continue
if data['latent_space'] != model.latent_space_name():
print('Skipping', dump_path, '(wrong latent space)')
continue
selected.append(data)
print('Using', dump_path)
if len(selected) == 0:
raise RuntimeError('No valid components in given path.')
comp_dict = { k : [] for k in ['X_comp', 'Z_comp', 'X_stdev', 'Z_stdev', 'names', 'types', 'layer_names', 'ranges', 'latent_types'] }
components = SimpleNamespace(**comp_dict)
for d in selected:
s = d['edit_start']
e = d['edit_end']
title = get_edit_name(d['component_index'], s, e - 1, d['name']) # show inclusive
components.X_comp.append(torch.from_numpy(d['act_comp']).cuda())
components.Z_comp.append(torch.from_numpy(d['lat_comp']).cuda())
components.X_stdev.append(d['act_stdev'])
components.Z_stdev.append(d['lat_stdev'])
components.names.append(title)
components.types.append(d['edit_type'])
components.layer_names.append(d['decomposition']['layer']) # only for act
components.ranges.append((s, e))
components.latent_types.append(d['latent_space']) # W or Z
use_named_latents = True
print('Loaded named components')
def setup_model():
global model, inst, layer_name, model_name, feat_shape, args, class_name
model_name = args.model
layer_name = args.layer
class_name = args.output_class
# Speed up pytorch
torch.autograd.set_grad_enabled(False)
torch.backends.cudnn.benchmark = True
# Load model
inst = get_instrumented_model(model_name, class_name, layer_name, torch.device('cuda'), use_w=args.use_w)
model = inst.model
feat_shape = inst.feature_shape[layer_name]
sample_dims = np.prod(feat_shape)
# Initialize
if args.inputs:
load_named_components(args.inputs, class_name)
else:
load_components(class_name, inst)
# Project tensor 'X' onto orthonormal basis 'comp', return coordinates
def project_ortho(X, comp):
N = comp.shape[0]
coords = (comp.reshape(N, -1) * X.reshape(-1)).sum(dim=1)
return coords.reshape([N]+[1]*X.ndim)
def zero_sliders():
for v in ui_state.sliders:
v.set(0.0)
def reset_sliders(zero_on_failure=True):
global ui_state
mode = ui_state.mode.get()
# Not orthogonal: need to solve least-norm problem
# Not batch size 1: one set of sliders not enough
# Not principal components: unsupported format
is_ortho = not (mode == 'latent' and model.latent_space_name() == 'Z')
is_single = state.z.shape[0] == 1
is_pcs = not use_named_latents
state.lat_slider_offset = 0
state.act_slider_offset = 0
enabled = False
if not (enabled and is_ortho and is_single and is_pcs):
if zero_on_failure:
zero_sliders()
return
if mode == 'activation':
val = state.base_act
mean = components.X_mean
comp = components.X_comp
stdev = components.X_stdev
else:
val = state.z
mean = components.Z_mean
comp = components.Z_comp
stdev = components.Z_stdev
n_sliders = len(ui_state.sliders)
coords = project_ortho(val - mean, comp)
offset = torch.sum(coords[:n_sliders] * comp[:n_sliders], dim=0)
scaled_coords = (coords.view(-1) / stdev).detach().cpu().numpy()
# Part representable by sliders
if mode == 'activation':
state.act_slider_offset = offset
else:
state.lat_slider_offset = offset
for i in range(n_sliders):
ui_state.sliders[i].set(round(scaled_coords[i], ndigits=1))
def setup_ui():
global root, toolbar, ui_state, app, canvas
root = tk.Tk()
scale = 1.0
app = TorchImageView(root, width=int(scale*1024), height=int(scale*1024), show_fps=False)
app.pack(fill=tk.BOTH, expand=tk.YES)
root.protocol("WM_DELETE_WINDOW", shutdown)
root.title('GANspace')
toolbar = tk.Toplevel(root)
toolbar.protocol("WM_DELETE_WINDOW", shutdown)
toolbar.geometry("215x800+0+0")
toolbar.title('')
N_COMPONENTS = min(70, len(components.names))
ui_state = SimpleNamespace(
sliders = [tk.DoubleVar(value=0.0) for _ in range(N_COMPONENTS)],
scales = [],
truncation = tk.DoubleVar(value=0.9),
outclass = tk.StringVar(value=class_name),
random_seed = tk.StringVar(value='0'),
mode = tk.StringVar(value='latent'),
batch_size = tk.IntVar(value=1), # how many images to show in window
edit_layer_start = tk.IntVar(value=0),
edit_layer_end = tk.IntVar(value=model.get_max_latents() - 1),
slider_max_val = 10.0
)
# Z vs activation mode button
#tk.Radiobutton(toolbar, text=f"Latent ({model.latent_space_name()})", variable=ui_state.mode, command=reset_sliders, value='latent').pack(fill="x")
#tk.Radiobutton(toolbar, text="Activation", variable=ui_state.mode, command=reset_sliders, value='activation').pack(fill="x")
# Choose range where latents are modified
def set_min(val):
ui_state.edit_layer_start.set(min(int(val), ui_state.edit_layer_end.get()))
def set_max(val):
ui_state.edit_layer_end.set(max(int(val), ui_state.edit_layer_start.get()))
max_latent_idx = model.get_max_latents() - 1
if not use_named_latents:
slider_min = tk.Scale(toolbar, command=set_min, variable=ui_state.edit_layer_start,
label='Layer start', from_=0, to=max_latent_idx, orient=tk.HORIZONTAL).pack(fill="x")
slider_max = tk.Scale(toolbar, command=set_max, variable=ui_state.edit_layer_end,
label='Layer end', from_=0, to=max_latent_idx, orient=tk.HORIZONTAL).pack(fill="x")
# Scrollable list of components
outer_frame = tk.Frame(toolbar, borderwidth=2, relief=tk.SUNKEN)
canvas = tk.Canvas(outer_frame, highlightthickness=0, borderwidth=0)
frame = tk.Frame(canvas)
vsb = tk.Scrollbar(outer_frame, orient="vertical", command=canvas.yview)
canvas.configure(yscrollcommand=vsb.set)
vsb.pack(side="right", fill="y")
canvas.pack(side="left", fill="both", expand=True)
canvas.create_window((4,4), window=frame, anchor="nw")
def onCanvasConfigure(event):
canvas.itemconfigure("all", width=event.width)
canvas.configure(scrollregion=canvas.bbox("all"))
canvas.bind("<Configure>", onCanvasConfigure)
def on_scroll(event):
delta = 1 if (event.num == 5 or event.delta < 0) else -1
canvas.yview_scroll(delta, "units")
canvas.bind_all("<Button-4>", on_scroll)
canvas.bind_all("<Button-5>", on_scroll)
canvas.bind_all("<MouseWheel>", on_scroll)
canvas.bind_all("<Key>", lambda event : handle_keypress(event.keysym_num))
# Sliders and buttons
for i in range(N_COMPONENTS):
inner = tk.Frame(frame, borderwidth=1, background="#aaaaaa")
scale = tk.Scale(inner, variable=ui_state.sliders[i], from_=-ui_state.slider_max_val,
to=ui_state.slider_max_val, resolution=0.1, orient=tk.HORIZONTAL, label=components.names[i])
scale.pack(fill=tk.X, side=tk.LEFT, expand=True)
ui_state.scales.append(scale) # for changing label later
if not use_named_latents:
tk.Button(inner, text=f"Save", command=partial(export_direction, i, inner)).pack(fill=tk.Y, side=tk.RIGHT)
inner.pack(fill=tk.X)
outer_frame.pack(fill="both", expand=True, pady=0)
tk.Button(toolbar, text="Reset", command=reset_sliders).pack(anchor=tk.CENTER, fill=tk.X, padx=4, pady=4)
tk.Scale(toolbar, variable=ui_state.truncation, from_=0.01, to=1.0,
resolution=0.01, orient=tk.HORIZONTAL, label='Truncation').pack(fill="x")
tk.Scale(toolbar, variable=ui_state.batch_size, from_=1, to=9,
resolution=1, orient=tk.HORIZONTAL, label='Batch size').pack(fill="x")
# Output class
frame = tk.Frame(toolbar)
tk.Label(frame, text="Class name").pack(fill="x", side="left")
tk.Entry(frame, textvariable=ui_state.outclass).pack(fill="x", side="right", expand=True, padx=5)
frame.pack(fill=tk.X, pady=3)
# Random seed
def update_seed():
seed_str = ui_state.random_seed.get()
if seed_str.isdigit():
resample_latent(int(seed_str))
frame = tk.Frame(toolbar)
tk.Label(frame, text="Seed").pack(fill="x", side="left")
tk.Entry(frame, textvariable=ui_state.random_seed, width=12).pack(fill="x", side="left", expand=True, padx=2)
tk.Button(frame, text="Update", command=update_seed).pack(fill="y", side="right", padx=3)
frame.pack(fill=tk.X, pady=3)
# Get new latent or new components
tk.Button(toolbar, text="Resample latent", command=partial(resample_latent, None, False)).pack(anchor=tk.CENTER, fill=tk.X, padx=4, pady=4)
#tk.Button(toolbar, text="Recompute", command=recompute_components).pack(anchor=tk.CENTER, fill=tk.X)
# App state
state = SimpleNamespace(
z=None, # current latent(s)
lat_slider_offset = 0, # part of lat that is explained by sliders
act_slider_offset = 0, # part of act that is explained by sliders
component_class=None, # name of current PCs' image class
seed=0, # Latent z_i generated by seed+i
base_act = None, # activation of considered layer given z
)
def resample_latent(seed=None, only_style=False):
class_name = ui_state.outclass.get()
if class_name.isnumeric():
class_name = int(class_name)
if hasattr(model, 'is_valid_class'):
if not model.is_valid_class(class_name):
return
model.set_output_class(class_name)
B = ui_state.batch_size.get()
state.seed = np.random.randint(np.iinfo(np.int32).max - B) if seed is None else seed
ui_state.random_seed.set(str(state.seed))
# Use consecutive seeds along batch dimension (for easier reproducibility)
trunc = ui_state.truncation.get()
latents = [model.sample_latent(1, seed=state.seed + i, truncation=trunc) for i in range(B)]
state.z = torch.cat(latents).clone().detach() # make leaf node
assert state.z.is_leaf, 'Latent is not leaf node!'
if hasattr(model, 'truncation'):
model.truncation = ui_state.truncation.get()
print(f'Seeds: {state.seed} -> {state.seed + B - 1}' if B > 1 else f'Seed: {state.seed}')
torch.manual_seed(state.seed)
model.partial_forward(state.z, layer_name)
state.base_act = inst.retained_features()[layer_name]
reset_sliders(zero_on_failure=False)
# Remove focus from text entry
canvas.focus_set()
# Used to recompute after changing class of conditional model
def recompute_components():
class_name = ui_state.outclass.get()
if class_name.isnumeric():
class_name = int(class_name)
if hasattr(model, 'is_valid_class'):
if not model.is_valid_class(class_name):
return
if hasattr(model, 'set_output_class'):
model.set_output_class(class_name)
load_components(class_name, inst)
# Used to detect parameter changes for lazy recomputation
class ParamCache():
def update(self, **kwargs):
dirty = False
for argname, val in kwargs.items():
# Check pointer, then value
current = getattr(self, argname, 0)
if current is not val and pickle.dumps(current) != pickle.dumps(val):
setattr(self, argname, val)
dirty = True
return dirty
cache = ParamCache()
def l2norm(t):
return torch.norm(t.view(t.shape[0], -1), p=2, dim=1, keepdim=True)
def apply_edit(z0, delta):
return z0 + delta
def reposition_toolbar():
size, X, Y = root.winfo_geometry().split('+')
W, H = size.split('x')
toolbar_W = toolbar.winfo_geometry().split('x')[0]
offset_y = -30 if is_linux else 0 # window title bar
toolbar.geometry(f'{toolbar_W}x{H}+{int(X)-int(toolbar_W)}+{int(Y)+offset_y}')
toolbar.update()
def on_draw():
global img
n_comp = len(ui_state.sliders)
slider_vals = np.array([s.get() for s in ui_state.sliders], dtype=np.float32)
# Run model sparingly
mode = ui_state.mode.get()
latent_start = ui_state.edit_layer_start.get()
latent_end = ui_state.edit_layer_end.get() + 1 # save as exclusive, show as inclusive
if cache.update(coords=slider_vals, comp=state.component_class, mode=mode, z=state.z, s=latent_start, e=latent_end):
with torch.no_grad():
z_base = state.z - state.lat_slider_offset
z_deltas = [0.0]*model.get_max_latents()
z_delta_global = 0.0
n_comp = slider_vals.size
act_deltas = {}
if torch.is_tensor(state.act_slider_offset):
act_deltas[layer_name] = -state.act_slider_offset
for space in components.latent_types:
assert space == model.latent_space_name(), \
'Cannot mix latent spaces (for now)'
for c in range(n_comp):
coord = slider_vals[c]
if coord == 0:
continue
edit_mode = components.types[c] if use_named_latents else mode
# Activation offset
if edit_mode in ['activation', 'both']:
delta = components.X_comp[c] * components.X_stdev[c] * coord
name = components.layer_names[c] if use_named_latents else layer_name
act_deltas[name] = act_deltas.get(name, 0.0) + delta
# Latent offset
if edit_mode in ['latent', 'both']:
delta = components.Z_comp[c] * components.Z_stdev[c] * coord
edit_range = components.ranges[c] if use_named_latents else (latent_start, latent_end)
full_range = (edit_range == (0, model.get_max_latents()))
# Single or multiple offsets?
if full_range:
z_delta_global = z_delta_global + delta
else:
for l in range(*edit_range):
z_deltas[l] = z_deltas[l] + delta
# Apply activation deltas
inst.remove_edits()
for layer, delta in act_deltas.items():
inst.edit_layer(layer, offset=delta)
# Evaluate
has_offsets = any(torch.is_tensor(t) for t in z_deltas)
z_final = apply_edit(z_base, z_delta_global)
if has_offsets:
z_final = [apply_edit(z_final, d) for d in z_deltas]
img = model.forward(z_final).clamp(0.0, 1.0)
app.draw(img)
# Save necessary data to disk for later loading
def export_direction(idx, button_frame):
name = tk.StringVar(value='')
num_strips = tk.IntVar(value=0)
strip_width = tk.IntVar(value=5)
slider_values = np.array([s.get() for s in ui_state.sliders])
slider_value = slider_values[idx]
if (slider_values != 0).sum() > 1:
print('Please modify only one slider')
return
elif slider_value == 0:
print('Modify selected slider to set usable range (currently 0)')
return
popup = tk.Toplevel(root)
popup.geometry("200x200+0+0")
tk.Label(popup, text="Edit name").pack()
tk.Entry(popup, textvariable=name).pack(pady=5)
# tk.Scale(popup, from_=0, to=30, variable=num_strips,
# resolution=1, orient=tk.HORIZONTAL, length=200, label='Image strips to export').pack()
# tk.Scale(popup, from_=3, to=15, variable=strip_width,
# resolution=1, orient=tk.HORIZONTAL, length=200, label='Image strip width').pack()
tk.Button(popup, text='OK', command=popup.quit).pack()
canceled = False
def on_close():
nonlocal canceled
canceled = True
popup.quit()
popup.protocol("WM_DELETE_WINDOW", on_close)
x = button_frame.winfo_rootx()
y = button_frame.winfo_rooty()
w = int(button_frame.winfo_geometry().split('x')[0])
popup.geometry('%dx%d+%d+%d' % (180, 90, x + w, y))
popup.mainloop()
popup.destroy()
# Update slider name
label = get_edit_name(idx, ui_state.edit_layer_start.get(),
ui_state.edit_layer_end.get(), name.get())
ui_state.scales[idx].config(label=label)
if canceled:
return
params = {
'name': name.get(),
'sigma_range': slider_value,
'component_index': idx,
'act_comp': components.X_comp[idx].detach().cpu().numpy(),
'lat_comp': components.Z_comp[idx].detach().cpu().numpy(), # either Z or W
'latent_space': model.latent_space_name(),
'act_stdev': components.X_stdev[idx].item(),
'lat_stdev': components.Z_stdev[idx].item(),
'model_name': model_name,
'output_class': ui_state.outclass.get(), # applied onto
'decomposition': {
'name': args.estimator,
'components': args.components,
'samples': args.n,
'layer': args.layer,
'class_name': state.component_class # computed from
},
'edit_type': ui_state.mode.get(),
'truncation': ui_state.truncation.get(),
'edit_start': ui_state.edit_layer_start.get(),
'edit_end': ui_state.edit_layer_end.get() + 1, # show as inclusive, save as exclusive
'example_seed': state.seed,
}
edit_mode_str = params['edit_type']
if edit_mode_str == 'latent':
edit_mode_str = model.latent_space_name().lower()
comp_class = state.component_class
appl_class = params['output_class']
if comp_class != appl_class:
comp_class = f'{comp_class}_onto_{appl_class}'
file_ident = "{model}-{name}-{cls}-{est}-{mode}-{layer}-comp{idx}-range{start}-{end}".format(
model=model_name,
name=prettify_name(params['name']),
cls=comp_class,
est=args.estimator,
mode=edit_mode_str,
layer=args.layer,
idx=idx,
start=params['edit_start'],
end=params['edit_end'],
)
out_dir = Path(__file__).parent / 'out' / 'directions'
makedirs(out_dir / file_ident, exist_ok=True)
with open(out_dir / f"{file_ident}.pkl", 'wb') as outfile:
pickle.dump(params, outfile)
print(f'Direction "{name.get()}" saved as "{file_ident}.pkl"')
batch_size = ui_state.batch_size.get()
len_padded = ((num_strips.get() - 1) // batch_size + 1) * batch_size
orig_seed = state.seed
reset_sliders()
# Limit max resolution
max_H = 512
ratio = min(1.0, max_H / inst.output_shape[2])
strips = [[] for _ in range(len_padded)]
for b in range(0, len_padded, batch_size):
# Resample
resample_latent((orig_seed + b) % np.iinfo(np.int32).max)
sigmas = np.linspace(slider_value, -slider_value, strip_width.get(), dtype=np.float32)
for sid, sigma in enumerate(sigmas):
ui_state.sliders[idx].set(sigma)
# Advance and show results on screen
on_draw()
root.update()
app.update()
batch_res = (255*img).byte().permute(0, 2, 3, 1).detach().cpu().numpy()
for i, data in enumerate(batch_res):
# Save individual
name_nodots = file_ident.replace('.', '_')
outname = out_dir / file_ident / f"{name_nodots}_ex{b+i}_{sid}.png"
im = Image.fromarray(data)
im = im.resize((int(ratio*im.size[0]), int(ratio*im.size[1])), Image.ANTIALIAS)
im.save(outname)
strips[b+i].append(data)
for i, strip in enumerate(strips[:num_strips.get()]):
print(f'Saving strip {i + 1}/{num_strips.get()}', end='\r', flush=True)
data = np.hstack(pad_frames(strip))
im = Image.fromarray(data)
im = im.resize((int(ratio*im.size[0]), int(ratio*im.size[1])), Image.ANTIALIAS)
im.save(out_dir / file_ident / f"{file_ident}_ex{i}.png")
# Reset to original state
resample_latent(orig_seed)
ui_state.sliders[idx].set(slider_value)
# Shared by glumpy and tkinter
def handle_keypress(code):
if code == 65307: # ESC
shutdown()
elif code == 65360: # HOME
reset_sliders()
elif code == 114: # R
pass #reset_sliders()
def shutdown():
global pending_close
pending_close = True
def on_key_release(symbol, modifiers):
handle_keypress(symbol)
if __name__=='__main__':
setup_model()
setup_ui()
resample_latent()
pending_close = False
while not pending_close:
root.update()
app.update()
on_draw()
reposition_toolbar()
root.destroy() |