File size: 24,396 Bytes
337965d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
# Copyright 2020 Erik Härkönen. All rights reserved.
# This file is licensed to you under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License. You may obtain a copy
# of the License at http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software distributed under
# the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS
# OF ANY KIND, either express or implied. See the License for the specific language
# governing permissions and limitations under the License.

# An interactive glumpy (OpenGL) + tkinter viewer for interacting with principal components.
# Requires OpenGL and CUDA support for rendering.

import torch
import numpy as np
import tkinter as tk
from tkinter import ttk
from types import SimpleNamespace
import matplotlib.pyplot as plt
from pathlib import Path
from os import makedirs
from models import get_instrumented_model
from config import Config
from decomposition import get_or_compute
from torch.nn.functional import interpolate
from TkTorchWindow import TorchImageView
from functools import partial
from platform import system
from PIL import Image
from utils import pad_frames, prettify_name
import pickle

# For platform specific UI tweaks
is_windows = 'Windows' in system()
is_linux = 'Linux' in system()
is_mac = 'Darwin' in system()

# Read input parameters
args = Config().from_args()

# Don't bother without GPU
assert torch.cuda.is_available(), 'Interactive mode requires CUDA'

# Use syntax from paper
def get_edit_name(idx, s, e, name=None):
    return 'E({comp}, {edit_range}){edit_name}'.format(
        comp = idx,
        edit_range = f'{s}-{e}' if e > s else s,
        edit_name = f': {name}' if name else ''
    )

# Load or compute PCA basis vectors
def load_components(class_name, inst):
    global components, state, use_named_latents

    config = args.from_dict({ 'output_class': class_name })
    dump_name = get_or_compute(config, inst)
    data = np.load(dump_name, allow_pickle=False)
    X_comp = data['act_comp']
    X_mean = data['act_mean']
    X_stdev = data['act_stdev']
    Z_comp = data['lat_comp']
    Z_mean = data['lat_mean']
    Z_stdev = data['lat_stdev']
    random_stdev_act = np.mean(data['random_stdevs'])
    n_comp = X_comp.shape[0]
    data.close()

    # Transfer to GPU
    components = SimpleNamespace(
        X_comp = torch.from_numpy(X_comp).cuda().float(),
        X_mean = torch.from_numpy(X_mean).cuda().float(),
        X_stdev = torch.from_numpy(X_stdev).cuda().float(),
        Z_comp = torch.from_numpy(Z_comp).cuda().float(),
        Z_stdev = torch.from_numpy(Z_stdev).cuda().float(),
        Z_mean = torch.from_numpy(Z_mean).cuda().float(),
        names = [f'Component {i}' for i in range(n_comp)],
        latent_types = [model.latent_space_name()]*n_comp,
        ranges = [(0, model.get_max_latents())]*n_comp,
    )
    
    state.component_class = class_name # invalidates cache
    use_named_latents = False
    print('Loaded components for', class_name, 'from', dump_name)

# Load previously exported named components from
# directory specified with '--inputs=path/to/comp'
def load_named_components(path, class_name):
    global components, state, use_named_latents

    import glob
    matches = glob.glob(f'{path}/*.pkl')

    selected = []
    for dump_path in matches:
        with open(dump_path, 'rb') as f:
            data = pickle.load(f)
            if data['model_name'] != model_name or data['output_class'] != class_name:
                continue

            if data['latent_space'] != model.latent_space_name():
                print('Skipping', dump_path, '(wrong latent space)')
                continue
            
            selected.append(data)
            print('Using', dump_path)

    if len(selected) == 0:
        raise RuntimeError('No valid components in given path.')

    comp_dict = { k : [] for k in ['X_comp', 'Z_comp', 'X_stdev', 'Z_stdev', 'names', 'types', 'layer_names', 'ranges', 'latent_types'] }
    components = SimpleNamespace(**comp_dict)

    for d in selected:
        s = d['edit_start']
        e = d['edit_end']
        title = get_edit_name(d['component_index'], s, e - 1, d['name']) # show inclusive
        components.X_comp.append(torch.from_numpy(d['act_comp']).cuda())
        components.Z_comp.append(torch.from_numpy(d['lat_comp']).cuda())
        components.X_stdev.append(d['act_stdev'])
        components.Z_stdev.append(d['lat_stdev'])
        components.names.append(title)
        components.types.append(d['edit_type'])
        components.layer_names.append(d['decomposition']['layer']) # only for act
        components.ranges.append((s, e))
        components.latent_types.append(d['latent_space']) # W or Z
    
    use_named_latents = True
    print('Loaded named components')

def setup_model():
    global model, inst, layer_name, model_name, feat_shape, args, class_name

    model_name = args.model
    layer_name = args.layer
    class_name = args.output_class

    # Speed up pytorch
    torch.autograd.set_grad_enabled(False)
    torch.backends.cudnn.benchmark = True

    # Load model
    inst = get_instrumented_model(model_name, class_name, layer_name, torch.device('cuda'), use_w=args.use_w)
    model = inst.model

    feat_shape = inst.feature_shape[layer_name]
    sample_dims = np.prod(feat_shape)

    # Initialize 
    if args.inputs:
        load_named_components(args.inputs, class_name)
    else:
        load_components(class_name, inst)

# Project tensor 'X' onto orthonormal basis 'comp', return coordinates
def project_ortho(X, comp):
    N = comp.shape[0]
    coords = (comp.reshape(N, -1) * X.reshape(-1)).sum(dim=1)
    return coords.reshape([N]+[1]*X.ndim)

def zero_sliders():
    for v in ui_state.sliders:
        v.set(0.0)

def reset_sliders(zero_on_failure=True):
    global ui_state

    mode = ui_state.mode.get()

    # Not orthogonal: need to solve least-norm problem
    # Not batch size 1: one set of sliders not enough
    # Not principal components: unsupported format
    is_ortho = not (mode == 'latent' and model.latent_space_name() == 'Z')
    is_single = state.z.shape[0] == 1
    is_pcs = not use_named_latents

    state.lat_slider_offset = 0
    state.act_slider_offset = 0

    enabled = False
    if not (enabled and is_ortho and is_single and is_pcs):
        if zero_on_failure:
            zero_sliders()
        return

    if  mode == 'activation':
        val = state.base_act
        mean = components.X_mean
        comp = components.X_comp
        stdev = components.X_stdev
    else:
        val = state.z
        mean = components.Z_mean
        comp = components.Z_comp
        stdev = components.Z_stdev

    n_sliders = len(ui_state.sliders)
    coords = project_ortho(val - mean, comp)
    offset = torch.sum(coords[:n_sliders] * comp[:n_sliders], dim=0)
    scaled_coords = (coords.view(-1) / stdev).detach().cpu().numpy()
    
    # Part representable by sliders
    if mode == 'activation':
        state.act_slider_offset = offset
    else:
        state.lat_slider_offset = offset

    for i in range(n_sliders):
        ui_state.sliders[i].set(round(scaled_coords[i], ndigits=1))

def setup_ui():
    global root, toolbar, ui_state, app, canvas

    root = tk.Tk()
    scale = 1.0
    app = TorchImageView(root, width=int(scale*1024), height=int(scale*1024), show_fps=False)
    app.pack(fill=tk.BOTH, expand=tk.YES)
    root.protocol("WM_DELETE_WINDOW", shutdown)
    root.title('GANspace')

    toolbar = tk.Toplevel(root)
    toolbar.protocol("WM_DELETE_WINDOW", shutdown)
    toolbar.geometry("215x800+0+0")
    toolbar.title('')

    N_COMPONENTS = min(70, len(components.names))
    ui_state = SimpleNamespace(
        sliders = [tk.DoubleVar(value=0.0) for _ in range(N_COMPONENTS)],
        scales = [],
        truncation = tk.DoubleVar(value=0.9),
        outclass = tk.StringVar(value=class_name),
        random_seed = tk.StringVar(value='0'),
        mode = tk.StringVar(value='latent'),
        batch_size = tk.IntVar(value=1), # how many images to show in window
        edit_layer_start = tk.IntVar(value=0),
        edit_layer_end = tk.IntVar(value=model.get_max_latents() - 1),
        slider_max_val = 10.0
    )

    # Z vs activation mode button
    #tk.Radiobutton(toolbar, text=f"Latent ({model.latent_space_name()})", variable=ui_state.mode, command=reset_sliders, value='latent').pack(fill="x")
    #tk.Radiobutton(toolbar, text="Activation", variable=ui_state.mode, command=reset_sliders, value='activation').pack(fill="x")

    # Choose range where latents are modified
    def set_min(val):
        ui_state.edit_layer_start.set(min(int(val), ui_state.edit_layer_end.get()))
    def set_max(val):
        ui_state.edit_layer_end.set(max(int(val), ui_state.edit_layer_start.get()))
    max_latent_idx = model.get_max_latents() - 1
    
    if not use_named_latents:
        slider_min = tk.Scale(toolbar, command=set_min, variable=ui_state.edit_layer_start,
            label='Layer start', from_=0, to=max_latent_idx, orient=tk.HORIZONTAL).pack(fill="x")
        slider_max = tk.Scale(toolbar, command=set_max, variable=ui_state.edit_layer_end,
            label='Layer end', from_=0, to=max_latent_idx, orient=tk.HORIZONTAL).pack(fill="x")

    # Scrollable list of components
    outer_frame = tk.Frame(toolbar, borderwidth=2, relief=tk.SUNKEN)
    canvas = tk.Canvas(outer_frame, highlightthickness=0, borderwidth=0)
    frame = tk.Frame(canvas)
    vsb = tk.Scrollbar(outer_frame, orient="vertical", command=canvas.yview)
    canvas.configure(yscrollcommand=vsb.set)

    vsb.pack(side="right", fill="y")
    canvas.pack(side="left", fill="both", expand=True)
    canvas.create_window((4,4), window=frame, anchor="nw")

    def onCanvasConfigure(event):
        canvas.itemconfigure("all", width=event.width)
        canvas.configure(scrollregion=canvas.bbox("all"))
    canvas.bind("<Configure>", onCanvasConfigure)

    def on_scroll(event):
        delta = 1 if (event.num == 5 or event.delta < 0) else -1
        canvas.yview_scroll(delta, "units")

    canvas.bind_all("<Button-4>", on_scroll)
    canvas.bind_all("<Button-5>", on_scroll)
    canvas.bind_all("<MouseWheel>", on_scroll)
    canvas.bind_all("<Key>", lambda event : handle_keypress(event.keysym_num))

    # Sliders and buttons
    for i in range(N_COMPONENTS):
        inner = tk.Frame(frame, borderwidth=1, background="#aaaaaa")
        scale = tk.Scale(inner, variable=ui_state.sliders[i], from_=-ui_state.slider_max_val,
            to=ui_state.slider_max_val, resolution=0.1, orient=tk.HORIZONTAL, label=components.names[i])
        scale.pack(fill=tk.X, side=tk.LEFT, expand=True)
        ui_state.scales.append(scale) # for changing label later
        if not use_named_latents:
            tk.Button(inner, text=f"Save", command=partial(export_direction, i, inner)).pack(fill=tk.Y, side=tk.RIGHT)
        inner.pack(fill=tk.X)

    outer_frame.pack(fill="both", expand=True, pady=0)

    tk.Button(toolbar, text="Reset", command=reset_sliders).pack(anchor=tk.CENTER, fill=tk.X, padx=4, pady=4)

    tk.Scale(toolbar, variable=ui_state.truncation, from_=0.01, to=1.0,
        resolution=0.01, orient=tk.HORIZONTAL, label='Truncation').pack(fill="x")

    tk.Scale(toolbar, variable=ui_state.batch_size, from_=1, to=9,
        resolution=1, orient=tk.HORIZONTAL, label='Batch size').pack(fill="x")
    
    # Output class
    frame = tk.Frame(toolbar)
    tk.Label(frame, text="Class name").pack(fill="x", side="left")
    tk.Entry(frame, textvariable=ui_state.outclass).pack(fill="x", side="right", expand=True, padx=5)
    frame.pack(fill=tk.X, pady=3)

    # Random seed
    def update_seed():
        seed_str = ui_state.random_seed.get()
        if seed_str.isdigit():
            resample_latent(int(seed_str))
    frame = tk.Frame(toolbar)
    tk.Label(frame, text="Seed").pack(fill="x", side="left")
    tk.Entry(frame, textvariable=ui_state.random_seed, width=12).pack(fill="x", side="left", expand=True, padx=2)
    tk.Button(frame, text="Update", command=update_seed).pack(fill="y", side="right", padx=3)
    frame.pack(fill=tk.X, pady=3)
    
    # Get new latent or new components
    tk.Button(toolbar, text="Resample latent", command=partial(resample_latent, None, False)).pack(anchor=tk.CENTER, fill=tk.X, padx=4, pady=4)
    #tk.Button(toolbar, text="Recompute", command=recompute_components).pack(anchor=tk.CENTER, fill=tk.X)

# App state
state = SimpleNamespace(
    z=None,                  # current latent(s)
    lat_slider_offset = 0,   # part of lat that is explained by sliders
    act_slider_offset = 0,   # part of act that is explained by sliders
    component_class=None,    # name of current PCs' image class
    seed=0,                  # Latent z_i generated by seed+i
    base_act = None,         # activation of considered layer given z
)

def resample_latent(seed=None, only_style=False):
    class_name = ui_state.outclass.get()
    if class_name.isnumeric():
        class_name = int(class_name)
    
    if hasattr(model, 'is_valid_class'):
        if not model.is_valid_class(class_name):
            return

    model.set_output_class(class_name)
    
    B = ui_state.batch_size.get()
    state.seed = np.random.randint(np.iinfo(np.int32).max - B) if seed is None else seed
    ui_state.random_seed.set(str(state.seed))
    
    # Use consecutive seeds along batch dimension (for easier reproducibility)
    trunc = ui_state.truncation.get()
    latents = [model.sample_latent(1, seed=state.seed + i, truncation=trunc) for i in range(B)]

    state.z = torch.cat(latents).clone().detach() # make leaf node
    assert state.z.is_leaf, 'Latent is not leaf node!'
    
    if hasattr(model, 'truncation'):
        model.truncation = ui_state.truncation.get()
    print(f'Seeds: {state.seed} -> {state.seed + B - 1}' if B > 1 else f'Seed: {state.seed}')

    torch.manual_seed(state.seed)
    model.partial_forward(state.z, layer_name)
    state.base_act = inst.retained_features()[layer_name]
    
    reset_sliders(zero_on_failure=False)

    # Remove focus from text entry
    canvas.focus_set()

# Used to recompute after changing class of conditional model
def recompute_components():
    class_name = ui_state.outclass.get()
    if class_name.isnumeric():
        class_name = int(class_name)
    
    if hasattr(model, 'is_valid_class'):
        if not model.is_valid_class(class_name):
            return

    if hasattr(model, 'set_output_class'):
        model.set_output_class(class_name)
    
    load_components(class_name, inst)

# Used to detect parameter changes for lazy recomputation
class ParamCache():
    def update(self, **kwargs):
        dirty = False
        for argname, val in kwargs.items():
            # Check pointer, then value
            current = getattr(self, argname, 0)
            if current is not val and pickle.dumps(current) != pickle.dumps(val):
                setattr(self, argname, val)
                dirty = True
        return dirty

cache = ParamCache()

def l2norm(t):
    return torch.norm(t.view(t.shape[0], -1), p=2, dim=1, keepdim=True)

def apply_edit(z0, delta):
    return z0 + delta

def reposition_toolbar():
    size, X, Y = root.winfo_geometry().split('+')
    W, H = size.split('x')
    toolbar_W = toolbar.winfo_geometry().split('x')[0]
    offset_y = -30 if is_linux else 0 # window title bar
    toolbar.geometry(f'{toolbar_W}x{H}+{int(X)-int(toolbar_W)}+{int(Y)+offset_y}')
    toolbar.update()

def on_draw():
    global img

    n_comp = len(ui_state.sliders)
    slider_vals = np.array([s.get() for s in ui_state.sliders], dtype=np.float32)
    
    # Run model sparingly
    mode = ui_state.mode.get()
    latent_start = ui_state.edit_layer_start.get()
    latent_end = ui_state.edit_layer_end.get() + 1 # save as exclusive, show as inclusive

    if cache.update(coords=slider_vals, comp=state.component_class, mode=mode, z=state.z, s=latent_start, e=latent_end):
        with torch.no_grad():
            z_base = state.z - state.lat_slider_offset
            z_deltas = [0.0]*model.get_max_latents()
            z_delta_global = 0.0
            
            n_comp = slider_vals.size
            act_deltas = {}
            
            if torch.is_tensor(state.act_slider_offset):
                act_deltas[layer_name] = -state.act_slider_offset

            for space in components.latent_types:
                assert space == model.latent_space_name(), \
                    'Cannot mix latent spaces (for now)'

            for c in range(n_comp):
                coord = slider_vals[c]
                if coord == 0:
                    continue

                edit_mode = components.types[c] if use_named_latents else mode
                
                # Activation offset
                if edit_mode in ['activation', 'both']:
                    delta = components.X_comp[c] * components.X_stdev[c] * coord
                    name = components.layer_names[c] if use_named_latents else layer_name
                    act_deltas[name] = act_deltas.get(name, 0.0) + delta

                # Latent offset
                if edit_mode in ['latent', 'both']:
                    delta = components.Z_comp[c] * components.Z_stdev[c] * coord
                    edit_range = components.ranges[c] if use_named_latents else (latent_start, latent_end)
                    full_range = (edit_range == (0, model.get_max_latents()))
                    
                    # Single or multiple offsets?
                    if full_range:
                        z_delta_global = z_delta_global + delta
                    else:
                        for l in range(*edit_range):
                            z_deltas[l] = z_deltas[l] + delta

            # Apply activation deltas
            inst.remove_edits()
            for layer, delta in act_deltas.items():
                inst.edit_layer(layer, offset=delta)
            
            # Evaluate
            has_offsets = any(torch.is_tensor(t) for t in z_deltas)
            z_final = apply_edit(z_base, z_delta_global)
            if has_offsets:
                z_final = [apply_edit(z_final, d) for d in z_deltas]
            img = model.forward(z_final).clamp(0.0, 1.0)

    app.draw(img)

# Save necessary data to disk for later loading
def export_direction(idx, button_frame):
    name = tk.StringVar(value='')
    num_strips = tk.IntVar(value=0)
    strip_width = tk.IntVar(value=5)

    slider_values = np.array([s.get() for s in ui_state.sliders])
    slider_value = slider_values[idx]
    if (slider_values != 0).sum() > 1:
        print('Please modify only one slider')
        return
    elif slider_value == 0:
        print('Modify selected slider to set usable range (currently 0)')
        return
    
    popup = tk.Toplevel(root)
    popup.geometry("200x200+0+0")
    tk.Label(popup, text="Edit name").pack()
    tk.Entry(popup, textvariable=name).pack(pady=5)
    # tk.Scale(popup, from_=0, to=30, variable=num_strips,
    #    resolution=1, orient=tk.HORIZONTAL, length=200, label='Image strips to export').pack()
    # tk.Scale(popup, from_=3, to=15, variable=strip_width,
    #    resolution=1, orient=tk.HORIZONTAL, length=200, label='Image strip width').pack()
    tk.Button(popup, text='OK', command=popup.quit).pack()
    
    canceled = False
    def on_close():
        nonlocal canceled
        canceled = True
        popup.quit()

    popup.protocol("WM_DELETE_WINDOW", on_close)
    x = button_frame.winfo_rootx()
    y = button_frame.winfo_rooty()
    w = int(button_frame.winfo_geometry().split('x')[0])
    popup.geometry('%dx%d+%d+%d' % (180, 90, x + w, y))
    popup.mainloop()
    popup.destroy()

    # Update slider name
    label = get_edit_name(idx, ui_state.edit_layer_start.get(),
        ui_state.edit_layer_end.get(), name.get())
    ui_state.scales[idx].config(label=label)

    if canceled:
        return

    params = {
        'name': name.get(),
        'sigma_range': slider_value,
        'component_index': idx,
        'act_comp': components.X_comp[idx].detach().cpu().numpy(),
        'lat_comp': components.Z_comp[idx].detach().cpu().numpy(), # either Z or W
        'latent_space': model.latent_space_name(),
        'act_stdev': components.X_stdev[idx].item(),
        'lat_stdev': components.Z_stdev[idx].item(),
        'model_name': model_name,
        'output_class': ui_state.outclass.get(), # applied onto
        'decomposition': {
            'name': args.estimator,
            'components': args.components,
            'samples': args.n,
            'layer': args.layer,
            'class_name': state.component_class # computed from
        },
        'edit_type': ui_state.mode.get(),
        'truncation': ui_state.truncation.get(),
        'edit_start': ui_state.edit_layer_start.get(),
        'edit_end': ui_state.edit_layer_end.get() + 1, # show as inclusive, save as exclusive
        'example_seed': state.seed,
    }

    edit_mode_str = params['edit_type']
    if edit_mode_str == 'latent':
        edit_mode_str = model.latent_space_name().lower()

    comp_class = state.component_class
    appl_class = params['output_class']
    if comp_class != appl_class:
        comp_class = f'{comp_class}_onto_{appl_class}'

    file_ident = "{model}-{name}-{cls}-{est}-{mode}-{layer}-comp{idx}-range{start}-{end}".format(
        model=model_name,
        name=prettify_name(params['name']),
        cls=comp_class,
        est=args.estimator,
        mode=edit_mode_str,
        layer=args.layer,
        idx=idx,
        start=params['edit_start'],
        end=params['edit_end'],
    )

    out_dir = Path(__file__).parent / 'out' / 'directions'
    makedirs(out_dir / file_ident, exist_ok=True)

    with open(out_dir / f"{file_ident}.pkl", 'wb') as outfile:
        pickle.dump(params, outfile)

    print(f'Direction "{name.get()}" saved as "{file_ident}.pkl"')

    batch_size = ui_state.batch_size.get()
    len_padded = ((num_strips.get() - 1) // batch_size + 1) * batch_size
    orig_seed = state.seed

    reset_sliders()

    # Limit max resolution
    max_H = 512
    ratio = min(1.0, max_H / inst.output_shape[2])

    strips = [[] for _ in range(len_padded)]
    for b in range(0, len_padded, batch_size):
        # Resample
        resample_latent((orig_seed + b) % np.iinfo(np.int32).max)

        sigmas = np.linspace(slider_value, -slider_value, strip_width.get(), dtype=np.float32)
        for sid, sigma in enumerate(sigmas):
            ui_state.sliders[idx].set(sigma)
            
            # Advance and show results on screen
            on_draw()
            root.update()
            app.update()
            
            batch_res = (255*img).byte().permute(0, 2, 3, 1).detach().cpu().numpy()

            for i, data in enumerate(batch_res):
                # Save individual
                name_nodots = file_ident.replace('.', '_')
                outname = out_dir / file_ident / f"{name_nodots}_ex{b+i}_{sid}.png"
                im = Image.fromarray(data)
                im = im.resize((int(ratio*im.size[0]), int(ratio*im.size[1])), Image.ANTIALIAS)
                im.save(outname)
                strips[b+i].append(data)

    for i, strip in enumerate(strips[:num_strips.get()]):
        print(f'Saving strip {i + 1}/{num_strips.get()}', end='\r', flush=True)
        data = np.hstack(pad_frames(strip))
        im = Image.fromarray(data)
        im = im.resize((int(ratio*im.size[0]), int(ratio*im.size[1])), Image.ANTIALIAS)
        im.save(out_dir / file_ident / f"{file_ident}_ex{i}.png")

    # Reset to original state
    resample_latent(orig_seed)
    ui_state.sliders[idx].set(slider_value)


# Shared by glumpy and tkinter
def handle_keypress(code):
    if code == 65307: # ESC
        shutdown()
    elif code == 65360: # HOME
        reset_sliders()
    elif code == 114: # R
        pass #reset_sliders()
    
def shutdown():
    global pending_close
    pending_close = True

def on_key_release(symbol, modifiers):
    handle_keypress(symbol)

if __name__=='__main__':
    setup_model()
    setup_ui()
    resample_latent()

    pending_close = False
    while not pending_close:
        root.update()
        app.update()
        on_draw()
        reposition_toolbar()

    root.destroy()