Prathamesh1420
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import mlflow
|
2 |
+
import mlflow.sklearn
|
3 |
+
from sklearn.datasets import load_diabetes
|
4 |
+
from sklearn.model_selection import train_test_split
|
5 |
+
from sklearn.linear_model import LinearRegression
|
6 |
+
from sklearn.metrics import mean_squared_error
|
7 |
+
from pyngrok import ngrok
|
8 |
+
import gradio as gr
|
9 |
+
|
10 |
+
# MLflow setup
|
11 |
+
mlflow.set_tracking_uri("./mlruns") # Local directory for tracking
|
12 |
+
mlflow.set_experiment("House Price Prediction")
|
13 |
+
|
14 |
+
# Training function
|
15 |
+
def train_and_log_model():
|
16 |
+
# Load dataset
|
17 |
+
data = load_diabetes()
|
18 |
+
X = data.data
|
19 |
+
y = data.target
|
20 |
+
|
21 |
+
# Split dataset
|
22 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
23 |
+
|
24 |
+
# Train model
|
25 |
+
model = LinearRegression()
|
26 |
+
model.fit(X_train, y_train)
|
27 |
+
|
28 |
+
# Predict and evaluate
|
29 |
+
y_pred = model.predict(X_test)
|
30 |
+
mse = mean_squared_error(y_test, y_pred)
|
31 |
+
|
32 |
+
# Log to MLflow
|
33 |
+
with mlflow.start_run():
|
34 |
+
mlflow.log_param("model", "Linear Regression")
|
35 |
+
mlflow.log_metric("mse", mse)
|
36 |
+
mlflow.sklearn.log_model(model, "model")
|
37 |
+
|
38 |
+
return mse, "Model training complete and logged to MLflow!"
|
39 |
+
|
40 |
+
# Start MLflow UI with Ngrok
|
41 |
+
def start_mlflow_ui():
|
42 |
+
public_url = ngrok.connect(5000) # Expose the MLflow UI running on port 5000
|
43 |
+
mlflow_command = "mlflow ui --host 0.0.0.0 --port 5000"
|
44 |
+
return_code = os.system(mlflow_command)
|
45 |
+
if return_code != 0:
|
46 |
+
return "Error: Unable to start MLflow UI."
|
47 |
+
return f"MLflow UI is accessible at {public_url}"
|
48 |
+
|
49 |
+
# Gradio Interface Functions
|
50 |
+
def train_model():
|
51 |
+
mse, message = train_and_log_model()
|
52 |
+
return f"MSE: {mse}\n{message}"
|
53 |
+
|
54 |
+
def get_mlflow_ui_link():
|
55 |
+
public_url = start_mlflow_ui()
|
56 |
+
return public_url
|
57 |
+
|
58 |
+
# Gradio UI
|
59 |
+
with gr.Blocks() as demo:
|
60 |
+
gr.Markdown("## House Price Prediction with MLflow")
|
61 |
+
train_btn = gr.Button("Train Model and Log to MLflow")
|
62 |
+
mlflow_btn = gr.Button("Start MLflow UI")
|
63 |
+
output = gr.Textbox(label="Output")
|
64 |
+
|
65 |
+
train_btn.click(train_model, inputs=[], outputs=output)
|
66 |
+
mlflow_btn.click(get_mlflow_ui_link, inputs=[], outputs=output)
|
67 |
+
|
68 |
+
# Launch Gradio App
|
69 |
+
if __name__ == "__main__":
|
70 |
+
demo.launch()
|