File size: 14,300 Bytes
f9f4f08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
"""Full definition of a GPT NeoX Language Model, all of it in this single file.

Based on the nanoGPT implementation: https://github.com/karpathy/nanoGPT and
https://github.com/EleutherAI/gpt-neox/tree/main/megatron/model.
"""
import math
from typing import Any, Optional, Tuple

import torch
import torch.nn as nn
from typing_extensions import Self

from tsai_gpt.config import Config



class GPT(nn.Module):
    def __init__(self, config: Config) -> None:
        super().__init__()
        assert config.padded_vocab_size is not None
        self.config = config

        self.lm_head = nn.Linear(config.n_embd, config.padded_vocab_size, bias=config.lm_head_bias)
        self.transformer = nn.ModuleDict(
            dict(
                wte=nn.Embedding(config.padded_vocab_size, config.n_embd),
                h=nn.ModuleList(Block(config) for _ in range(config.n_layer)),
                ln_f=config.norm_class(config.n_embd, eps=config.norm_eps),
            )
        )
        self.max_seq_length = self.config.block_size
        self.mask_cache: Optional[torch.Tensor] = None

    @property
    def max_seq_length(self) -> int:
        return self._max_seq_length

    @max_seq_length.setter
    def max_seq_length(self, value: int) -> None:
        """
        When doing inference, the sequences used might be shorter than the model's context length.
        This allows setting a smaller number to avoid allocating unused memory
        """
        if value > self.config.block_size:
            raise ValueError(f"Cannot attend to {value}, block size is only {self.config.block_size}")
        self._max_seq_length = value
        if not hasattr(self, "cos"):
            # first call
            cos, sin = self.rope_cache()
            self.register_buffer("cos", cos, persistent=False)
            self.register_buffer("sin", sin, persistent=False)
        elif value != self.cos.size(0):
            # override
            self.cos, self.sin = self.rope_cache(device=self.cos.device)
        # the mask and kv cache size will get updated on `set_kv_cache`. we cannot update it here because we don't know
        # if the kv cache is expected

    def reset_parameters(self) -> None:
        # Trigger resetting the rope-cache
        self.max_seq_length = self.config.block_size

    def _init_weights(self, module: nn.Module) -> None:
        """Meant to be used with `gpt.apply(gpt._init_weights)`."""
        if isinstance(module, nn.Linear):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
            if module.bias is not None:
                torch.nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)

    def forward(self, idx: torch.Tensor, input_pos: Optional[torch.Tensor] = None) -> torch.Tensor:
        T = idx.size(1)
        if self.max_seq_length < T:
            raise ValueError(f"Cannot forward sequence of length {T}, max seq length is only {self.max_seq_length}.")

        if input_pos is not None:  # use the kv cache
            cos = self.cos.index_select(0, input_pos)
            sin = self.sin.index_select(0, input_pos)
            if self.mask_cache is None:
                raise TypeError("You need to call `gpt.set_kv_cache()`")
            mask = self.mask_cache.index_select(2, input_pos)
        else:
            cos = self.cos[:T]
            sin = self.sin[:T]
            mask = None

        x = self.transformer.wte(idx)  # token embeddings of shape (b, t, n_embd)
        for block in self.transformer.h:
            x = block(x, cos, sin, mask, input_pos)
        x = self.transformer.ln_f(x)
        return self.lm_head(x)  # (b, t, vocab_size)

    @classmethod
    def from_name(cls, name: str, **kwargs: Any) -> Self:
        return cls(Config.from_name(name, **kwargs))

    def rope_cache(self, device: Optional[torch.device] = None) -> Tuple[torch.Tensor, torch.Tensor]:
        return build_rope_cache(
            seq_len=self.max_seq_length,
            n_elem=self.config.rope_n_elem,
            device=device,
            condense_ratio=self.config.rope_condense_ratio,
            base=self.config.rope_base,
        )

    def set_kv_cache(
        self,
        batch_size: int,
        rope_cache_length: Optional[int] = None,
        device: Optional[torch.device] = None,
        dtype: Optional[torch.dtype] = None,
    ) -> None:
        if rope_cache_length is None:
            rope_cache_length = self.cos.size(-1)
        max_seq_length = self.max_seq_length

        # initialize the kv cache for all blocks
        for block in self.transformer.h:
            block.attn.kv_cache = block.attn.build_kv_cache(
                batch_size, max_seq_length, rope_cache_length, device, dtype
            )

        if self.mask_cache is None or self.mask_cache.size(3) != max_seq_length:
            # passing `attn_mask` to SDPA downgrades it to use the inefficient implementation. since we only need the mask
            # for the kv-cache support (only during inference), we only create it in that situation
            # this will be resolved by https://github.com/pytorch/pytorch/issues/96099
            ones = torch.ones((max_seq_length, max_seq_length), device=device, dtype=torch.bool)
            self.mask_cache = torch.tril(ones).unsqueeze(0).unsqueeze(0)

    def clear_kv_cache(self) -> None:
        self.mask_cache = None
        for block in self.transformer.h:
            block.attn.kv_cache = None


class Block(nn.Module):
    def __init__(self, config: Config) -> None:
        super().__init__()
        self.norm_1 = config.norm_class(config.n_embd, eps=config.norm_eps)
        self.attn = CausalSelfAttention(config)
        self.norm_2 = None if config.shared_attention_norm else config.norm_class(config.n_embd, eps=config.norm_eps)
        self.mlp = config.mlp_class(config)

        self.config = config

    def forward(
        self,
        x: torch.Tensor,
        cos: torch.Tensor,
        sin: torch.Tensor,
        mask: Optional[torch.Tensor] = None,
        input_pos: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        n_1 = self.norm_1(x)
        h = self.attn(n_1, cos, sin, mask, input_pos)
        if self.config.parallel_residual:
            n_2 = n_1 if self.config.shared_attention_norm else self.norm_2(x)
            x = self.mlp(n_2) + h + x
        else:
            if self.config.shared_attention_norm:
                raise NotImplementedError(
                    "No checkpoint amongst the ones we support uses this configuration"
                    " (non-parallel residual and shared attention norm)."
                )
            x = h + x
            x = self.mlp(self.norm_2(x)) + x
        return x


class CausalSelfAttention(nn.Module):
    def __init__(self, config: Config) -> None:
        super().__init__()
        shape = (config.n_head + 2 * config.n_query_groups) * config.head_size
        # key, query, value projections for all heads, but in a batch
        self.attn = nn.Linear(config.n_embd, shape, bias=config.bias)
        # output projection
        self.proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
        # disabled by default
        self.kv_cache: Optional[KVCache] = None

        self.config = config

    def forward(
        self,
        x: torch.Tensor,
        cos: torch.Tensor,
        sin: torch.Tensor,
        mask: Optional[torch.Tensor] = None,
        input_pos: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        B, T, C = x.size()  # batch size, sequence length, embedding dimensionality (n_embd)

        qkv = self.attn(x)

        # assemble into a number of query groups to support MHA, MQA and GQA together (see `config.n_query_groups`)
        q_per_kv = self.config.n_head // self.config.n_query_groups
        total_qkv = q_per_kv + 2  # each group has 1+ queries, 1 key, and 1 value
        qkv = qkv.view(B, T, self.config.n_query_groups, total_qkv, self.config.head_size)
        qkv = qkv.permute(0, 2, 3, 1, 4)  # (B, n_query_groups, total_qkv, T, hs)

        # split batched computation into three
        q, k, v = qkv.split((q_per_kv, 1, 1), dim=2)

        # maybe repeat k and v if for the non multi-head attention cases
        # training: flash attention requires it
        # inference: multi-query would require a full kv cache so avoid it to limit its memory usage
        if self.config.n_query_groups != self.config.n_head and (input_pos is None or self.config.n_query_groups != 1):
            k = k.expand(B, self.config.n_query_groups, q_per_kv, T, self.config.head_size)
            v = v.expand(B, self.config.n_query_groups, q_per_kv, T, self.config.head_size)

        q = q.reshape(B, -1, T, self.config.head_size)  # (B, nh_q, T, hs)
        k = k.reshape(B, -1, T, self.config.head_size)  # (B, nh_k, T, hs)
        v = v.reshape(B, -1, T, self.config.head_size)  # (B, nh_v, T, hs)

        q_roped = apply_rope(q[..., : self.config.rope_n_elem], cos, sin)
        k_roped = apply_rope(k[..., : self.config.rope_n_elem], cos, sin)
        q = torch.cat((q_roped, q[..., self.config.rope_n_elem :]), dim=-1)
        k = torch.cat((k_roped, k[..., self.config.rope_n_elem :]), dim=-1)

        if input_pos is not None:
            if not isinstance(self.kv_cache, KVCache):
                raise TypeError("You need to call `gpt.set_kv_cache()`")
            k, v = self.kv_cache(input_pos, k, v)

        y = self.scaled_dot_product_attention(q, k, v, mask)

        y = y.reshape(B, T, C)  # re-assemble all head outputs side by side

        # output projection
        return self.proj(y)

    def scaled_dot_product_attention(
        self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, mask: Optional[torch.Tensor] = None
    ) -> torch.Tensor:
        scale = 1.0 / math.sqrt(self.config.head_size)
        y = torch.nn.functional.scaled_dot_product_attention(
            q, k, v, attn_mask=mask, dropout_p=0.0, scale=scale, is_causal=mask is None
        )
        return y.transpose(1, 2)

    def build_kv_cache(
        self,
        batch_size: int,
        max_seq_length: int,
        rope_cache_length: Optional[int] = None,
        device: Optional[torch.device] = None,
        dtype: Optional[torch.dtype] = None,
    ) -> "KVCache":
        heads = 1 if self.config.n_query_groups == 1 else self.config.n_head
        v_shape = (batch_size, heads, max_seq_length, self.config.head_size)
        if rope_cache_length is None:
            if self.config.rotary_percentage != 1.0:
                raise TypeError("Please pass the `rope_cache_length=gpt.cos.size(-1)` value")
            k_shape = v_shape
        else:
            k_shape = (
                batch_size,
                heads,
                max_seq_length,
                rope_cache_length + self.config.head_size - self.config.rope_n_elem,
            )
        return KVCache(k_shape, v_shape, device=device, dtype=dtype)


class GptNeoxMLP(nn.Module):
    def __init__(self, config: Config) -> None:
        super().__init__()
        self.fc = nn.Linear(config.n_embd, config.intermediate_size, bias=config.bias)
        self.proj = nn.Linear(config.intermediate_size, config.n_embd, bias=config.bias)

        self.config = config

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.fc(x)
        x = torch.nn.functional.gelu(x, approximate=self.config.gelu_approximate)
        return self.proj(x)


class LLaMAMLP(nn.Module):
    def __init__(self, config: Config) -> None:
        super().__init__()
        self.fc_1 = nn.Linear(config.n_embd, config.intermediate_size, bias=config.bias)
        self.fc_2 = nn.Linear(config.n_embd, config.intermediate_size, bias=config.bias)
        self.proj = nn.Linear(config.intermediate_size, config.n_embd, bias=config.bias)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x_fc_1 = self.fc_1(x)
        x_fc_2 = self.fc_2(x)
        x = torch.nn.functional.silu(x_fc_1) * x_fc_2
        return self.proj(x)


def build_rope_cache(
    seq_len: int, n_elem: int, device: Optional[torch.device] = None, base: int = 10000, condense_ratio: int = 1
) -> Tuple[torch.Tensor, torch.Tensor]:
    """Enhanced Transformer with Rotary Position Embedding.

    Derived from: https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/
    transformers/rope/__init__.py. MIT License:
    https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/license.
    """
    # $\Theta = {\theta_i = 10000^{\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$
    theta = 1.0 / (base ** (torch.arange(0, n_elem, 2, device=device).float() / n_elem))

    # Create position indexes `[0, 1, ..., seq_len - 1]`
    seq_idx = torch.arange(seq_len, device=device) / condense_ratio

    # Calculate the product of position index and $\theta_i$
    idx_theta = torch.outer(seq_idx, theta).repeat(1, 2)

    return torch.cos(idx_theta), torch.sin(idx_theta)


def apply_rope(x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor) -> torch.Tensor:
    head_size = x.size(-1)
    x1 = x[..., : head_size // 2]  # (B, nh, T, hs/2)
    x2 = x[..., head_size // 2 :]  # (B, nh, T, hs/2)
    rotated = torch.cat((-x2, x1), dim=-1)  # (B, nh, T, hs)
    roped = (x * cos) + (rotated * sin)
    return roped.type_as(x)


class KVCache(nn.Module):
    def __init__(
        self,
        k_shape: Tuple[int, int, int, int],
        v_shape: Tuple[int, int, int, int],
        device: Optional[torch.device] = None,
        dtype: Optional[torch.dtype] = None,
    ) -> None:
        super().__init__()
        self.register_buffer("k", torch.zeros(k_shape, device=device, dtype=dtype), persistent=False)
        self.register_buffer("v", torch.zeros(v_shape, device=device, dtype=dtype), persistent=False)

    def forward(self, input_pos: torch.Tensor, k: torch.Tensor, v: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        # move the buffer to the activation dtype for when AMP is used
        self.k = self.k.to(k.dtype)
        self.v = self.v.to(v.dtype)
        # update the cache
        k = self.k.index_copy_(2, input_pos, k)
        v = self.v.index_copy_(2, input_pos, v)
        return k, v