import gradio as gr from transformers import pipeline from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "finetuned_phi2" model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) num_new_tokens = 200 # change to the number of new tokens you want to generate DESCRIPTION = """\ # Microsoft Phi2 Chatbot \n The model is hosted on a CPU and inference takes a long time. Please feel free to duplicate the space and use it on a GPU""" def generate(question, context, max_new_tokens = 200, temperature = 0.6): system_message = "You are a question answering chatbot. Provide a clear and detailed explanation" prompt = f"[INST] <>\n{system_message}\n<>\n\n {question} [/INST]" # replace the command here with something relevant to your task # Count the number of tokens in the prompt num_prompt_tokens = len(tokenizer(prompt)['input_ids']) # Calculate the maximum length for the generation max_length = num_prompt_tokens + max_new_tokens gen = pipeline('text-generation', model=model, tokenizer=tokenizer, max_length=max_length, temperature=temperature) result = gen(prompt) return (result[0]['generated_text'].replace(prompt, '')) bbchatbot = gr.Chatbot( avatar_images=["logo/user_logo.png", "logo/bot_logo.png"], bubble_full_width=False, show_label=False, show_copy_button=True, likeable=True,) examples = [["What are transformers?"], ["What are LLMs"], ["What is machine learning?"], ["How to write a good resume?"]] additional_inputs = additional_inputs=[gr.Slider(label="Max new tokens",minimum=100,maximum=500,step=10,value=num_new_tokens), gr.Slider(label="Temperature",minimum=0.1,maximum=4.0,step=0.1,value=0.6)] chat_interface = gr.ChatInterface(fn=generate, additional_inputs=additional_inputs, chatbot=bbchatbot, title="", examples=examples ) with gr.Blocks(css="style.css") as demo: gr.Markdown(DESCRIPTION) gr.DuplicateButton(value="Duplicate for private use", elem_id="duplicate-button") chat_interface.render() demo.queue().launch(show_api=False)