Spaces:
Sleeping
Sleeping
Pranav0111
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -3,10 +3,8 @@ from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
|
3 |
import random
|
4 |
from datetime import datetime
|
5 |
|
6 |
-
# Initialize
|
7 |
sentiment_analyzer = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
|
8 |
-
|
9 |
-
# Initialize text generation model
|
10 |
model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
11 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
12 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
@@ -20,129 +18,159 @@ text_generator = pipeline(
|
|
20 |
pad_token_id=tokenizer.eos_token_id
|
21 |
)
|
22 |
|
23 |
-
class
|
24 |
-
|
25 |
-
|
|
|
|
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
def generate_affirmation(self, sentiment):
|
41 |
-
affirmation_template = f"Generate a short, encouraging affirmation for someone feeling {sentiment.lower()}."
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
return "I acknowledge my feelings and trust in my ability to handle this moment."
|
51 |
-
|
52 |
-
def analyze_entry(self, entry_text):
|
53 |
-
if not entry_text.strip():
|
54 |
-
return ("Please write something in your journal entry.", "", "", "")
|
55 |
-
|
56 |
-
try:
|
57 |
-
# Perform sentiment analysis
|
58 |
-
sentiment_result = sentiment_analyzer(entry_text)[0]
|
59 |
-
sentiment = sentiment_result["label"].upper()
|
60 |
-
sentiment_score = sentiment_result["score"]
|
61 |
-
except Exception as e:
|
62 |
-
print("Error during sentiment analysis:", e)
|
63 |
-
return (
|
64 |
-
"An error occurred during analysis. Please try again.",
|
65 |
-
"Error",
|
66 |
-
"Could not analyze sentiment due to an error.",
|
67 |
-
"Could not generate affirmation due to an error."
|
68 |
-
)
|
69 |
-
|
70 |
-
entry_data = {
|
71 |
-
"text": entry_text,
|
72 |
-
"timestamp": datetime.now().isoformat(),
|
73 |
-
"sentiment": sentiment,
|
74 |
-
"sentiment_score": sentiment_score
|
75 |
}
|
76 |
-
self.entries.append(entry_data)
|
77 |
-
|
78 |
-
# Generate responses using TinyLlama
|
79 |
-
prompts = self.generate_prompts(sentiment)
|
80 |
-
affirmation = self.generate_affirmation(sentiment)
|
81 |
-
sentiment_percentage = f"{sentiment_score * 100:.1f}%"
|
82 |
-
message = f"Entry analyzed! Sentiment: {sentiment} ({sentiment_percentage} confidence)"
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
-
|
|
|
|
|
100 |
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
except Exception as e:
|
113 |
-
print("Error generating insights:", e)
|
114 |
-
return f"""Monthly Insights:
|
115 |
-
Total Entries: {total_entries}
|
116 |
-
Positive Entries: {positive_entries} ({(positive_entries / total_entries * 100):.1f}%)
|
117 |
-
Negative Entries: {total_entries - positive_entries} ({((total_entries - positive_entries) / total_entries * 100):.1f}%)
|
118 |
-
"""
|
119 |
-
|
120 |
-
def create_journal_interface():
|
121 |
-
journal = JournalCompanion()
|
122 |
|
123 |
-
with gr.Blocks(title="AI Journal Companion") as interface:
|
124 |
-
gr.
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
placeholder="Write your journal entry here...",
|
132 |
-
lines=5
|
133 |
)
|
134 |
-
|
135 |
-
|
136 |
-
with gr.
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
-
|
143 |
-
|
144 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
|
|
|
146 |
submit_btn.click(
|
147 |
fn=journal.analyze_entry,
|
148 |
inputs=[entry_input],
|
|
|
3 |
import random
|
4 |
from datetime import datetime
|
5 |
|
6 |
+
# Initialize models (same as before)
|
7 |
sentiment_analyzer = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
|
|
|
|
|
8 |
model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
9 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
|
|
18 |
pad_token_id=tokenizer.eos_token_id
|
19 |
)
|
20 |
|
21 |
+
# JournalCompanion class remains the same as in previous example
|
22 |
+
# ... (insert the entire JournalCompanion class here)
|
23 |
+
|
24 |
+
def create_journal_interface():
|
25 |
+
journal = JournalCompanion()
|
26 |
|
27 |
+
# Custom CSS for better styling
|
28 |
+
custom_css = """
|
29 |
+
/* Global styles */
|
30 |
+
.container {
|
31 |
+
max-width: 1200px;
|
32 |
+
margin: 0 auto;
|
33 |
+
padding: 20px;
|
34 |
+
}
|
35 |
|
36 |
+
/* Header styles */
|
37 |
+
.header {
|
38 |
+
text-align: center;
|
39 |
+
margin-bottom: 2rem;
|
40 |
+
background: linear-gradient(135deg, #6B73FF 0%, #000DFF 100%);
|
41 |
+
padding: 2rem;
|
42 |
+
border-radius: 15px;
|
43 |
+
color: white;
|
44 |
+
}
|
|
|
|
|
45 |
|
46 |
+
/* Input area styles */
|
47 |
+
.input-container {
|
48 |
+
background: white;
|
49 |
+
border-radius: 15px;
|
50 |
+
padding: 20px;
|
51 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
52 |
+
margin-bottom: 20px;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
+
/* Output area styles */
|
56 |
+
.output-container {
|
57 |
+
background: #f8f9fa;
|
58 |
+
border-radius: 15px;
|
59 |
+
padding: 20px;
|
60 |
+
margin-top: 20px;
|
61 |
+
}
|
62 |
+
|
63 |
+
/* Button styles */
|
64 |
+
.custom-button {
|
65 |
+
background: linear-gradient(135deg, #6B73FF 0%, #000DFF 100%);
|
66 |
+
border: none;
|
67 |
+
padding: 10px 20px;
|
68 |
+
border-radius: 8px;
|
69 |
+
color: white;
|
70 |
+
font-weight: bold;
|
71 |
+
cursor: pointer;
|
72 |
+
transition: transform 0.2s;
|
73 |
+
}
|
74 |
|
75 |
+
.custom-button:hover {
|
76 |
+
transform: translateY(-2px);
|
77 |
+
}
|
78 |
+
|
79 |
+
/* Card styles */
|
80 |
+
.card {
|
81 |
+
background: white;
|
82 |
+
border-radius: 10px;
|
83 |
+
padding: 15px;
|
84 |
+
margin: 10px 0;
|
85 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05);
|
86 |
+
transition: transform 0.2s;
|
87 |
+
}
|
88 |
+
|
89 |
+
.card:hover {
|
90 |
+
transform: translateY(-2px);
|
91 |
+
}
|
92 |
+
|
93 |
+
/* Animation for results */
|
94 |
+
@keyframes fadeIn {
|
95 |
+
from { opacity: 0; transform: translateY(10px); }
|
96 |
+
to { opacity: 1; transform: translateY(0); }
|
97 |
+
}
|
98 |
|
99 |
+
.result-animation {
|
100 |
+
animation: fadeIn 0.5s ease-out;
|
101 |
+
}
|
102 |
|
103 |
+
/* Responsive design */
|
104 |
+
@media (max-width: 768px) {
|
105 |
+
.container {
|
106 |
+
padding: 10px;
|
107 |
+
}
|
108 |
|
109 |
+
.header {
|
110 |
+
padding: 1rem;
|
111 |
+
}
|
112 |
+
}
|
113 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
+
with gr.Blocks(css=custom_css, title="AI Journal Companion") as interface:
|
116 |
+
with gr.Column(elem_classes="container"):
|
117 |
+
# Header
|
118 |
+
with gr.Column(elem_classes="header"):
|
119 |
+
gr.Markdown("# π AI Journal Companion")
|
120 |
+
gr.Markdown(
|
121 |
+
"Transform your thoughts into insights with AI-powered journaling",
|
122 |
+
elem_classes="subtitle"
|
|
|
|
|
123 |
)
|
124 |
+
|
125 |
+
# Main content
|
126 |
+
with gr.Row():
|
127 |
+
# Input Column
|
128 |
+
with gr.Column(scale=1, elem_classes="input-container"):
|
129 |
+
entry_input = gr.Textbox(
|
130 |
+
label="Write Your Thoughts",
|
131 |
+
placeholder="Share what's on your mind...",
|
132 |
+
lines=8,
|
133 |
+
elem_classes="journal-input"
|
134 |
+
)
|
135 |
+
submit_btn = gr.Button(
|
136 |
+
"β¨ Analyze Entry",
|
137 |
+
variant="primary",
|
138 |
+
elem_classes="custom-button"
|
139 |
+
)
|
140 |
|
141 |
+
# Output Column
|
142 |
+
with gr.Column(scale=1, elem_classes="output-container"):
|
143 |
+
with gr.Column(elem_classes="card result-animation"):
|
144 |
+
result_message = gr.Markdown(label="Analysis")
|
145 |
+
sentiment_output = gr.Textbox(
|
146 |
+
label="Emotional Tone",
|
147 |
+
elem_classes="sentiment-output"
|
148 |
+
)
|
149 |
+
|
150 |
+
with gr.Column(elem_classes="card result-animation"):
|
151 |
+
prompt_output = gr.Markdown(
|
152 |
+
label="Reflection Prompts",
|
153 |
+
elem_classes="prompts-output"
|
154 |
+
)
|
155 |
+
|
156 |
+
with gr.Column(elem_classes="card result-animation"):
|
157 |
+
affirmation_output = gr.Textbox(
|
158 |
+
label="Your Daily Affirmation",
|
159 |
+
elem_classes="affirmation-output"
|
160 |
+
)
|
161 |
+
|
162 |
+
# Insights Section
|
163 |
+
with gr.Row(elem_classes="insights-section"):
|
164 |
+
with gr.Column(scale=1):
|
165 |
+
insights_btn = gr.Button(
|
166 |
+
"π View Monthly Insights",
|
167 |
+
elem_classes="custom-button"
|
168 |
+
)
|
169 |
+
insights_output = gr.Markdown(
|
170 |
+
elem_classes="card insights-card"
|
171 |
+
)
|
172 |
|
173 |
+
# Event handlers
|
174 |
submit_btn.click(
|
175 |
fn=journal.analyze_entry,
|
176 |
inputs=[entry_input],
|