import os import google.generativeai as genai import gradio as gr import requests from moviepy.editor import AudioFileClip, ImageClip, CompositeVideoClip from PIL import Image # Configure Google Gemini API genai.configure(api_key=os.getenv("GEMINI_API_KEY")) # Play.ht API keys API_KEY = os.getenv('PLAY_API_KEY') USER_ID = os.getenv('PLAY_USER_ID') # Ensure compatibility with updated PIL library if not hasattr(Image, 'ANTIALIAS'): # Image.ANTIALIAS is deprecated; LANCZOS is the replacement Image.ANTIALIAS = Image.LANCZOS # Theme selection theme = gr.themes.Base( primary_hue="emerald", ) # Function to upload image to Gemini and get roasted text def upload_to_gemini(path, mime_type="image/jpeg"): file = genai.upload_file(path, mime_type=mime_type) return file def generate_roast(image_path): try: uploaded_file = upload_to_gemini(image_path) generation_config = { "temperature": 1, "top_p": 0.95, "top_k": 40, "max_output_tokens": 8192, "response_mime_type": "text/plain", } model = genai.GenerativeModel( model_name="gemini-1.5-flash-002", generation_config=generation_config, system_instruction="You are a professional satirist and fashion expert. Roast the provided profile picture in less than 50 words.", ) chat_session = model.start_chat( history=[{"role": "user", "parts": [uploaded_file]}] ) response = chat_session.send_message("Roast this image!") return response.text except Exception as e: return f"Error generating roast: {e}" # Function to convert text to speech with Play.ht def text_to_speech(text): try: url = "https://api.play.ht/api/v2/tts/stream" payload = { "voice": "s3://voice-cloning-zero-shot/d9ff78ba-d016-47f6-b0ef-dd630f59414e/female-cs/manifest.json", "output_format": "mp3", "text": text, } headers = { "accept": "audio/mpeg", "content-type": "application/json", "Authorization": API_KEY, "X-User-ID": USER_ID } response = requests.post(url, json=payload, headers=headers) if response.status_code == 200: audio_path = "output_audio.mp3" with open(audio_path, "wb") as audio_file: audio_file.write(response.content) return audio_path else: return f"Error generating audio: {response.status_code} - {response.text}" except Exception as e: return f"Error generating audio: {e}" # Function to create video from image, audio, and add logo overlay def create_video(image, audio): try: # Load the audio file audio_clip = AudioFileClip(audio) # Load the main image and set its duration to match the audio image_clip = ImageClip(image).set_duration(audio_clip.duration) # Load the logo image, resize it, and position it in the top-right corner logo = ImageClip("Logo.png").resize(height=100) # Adjust the height as needed logo = logo.set_position(("right", "top")).set_duration(audio_clip.duration) # Create a composite video with the main image and the logo overlay video_clip = CompositeVideoClip([image_clip, logo]).set_audio(audio_clip) # Save the video to a temporary file output_path = "/tmp/output_video_with_logo.mp4" video_clip.write_videofile( output_path, fps=30, codec="libx264", audio_codec="aac", preset="slow", ffmpeg_params=["-b:v", "2000k"] # Adjust bitrate if needed ) return output_path except Exception as e: return f"Error generating video: {e}" # Function to process all steps at once def process_roast(image_path): roast_text = generate_roast(image_path) audio_path = text_to_speech(roast_text) video_path = create_video(image_path, audio_path) return roast_text, audio_path, video_path # Gradio Interface with gr.Blocks(theme=theme) as demo: gr.Markdown("# Image Roasting App with TTS and Video") gr.Markdown("Upload an image, click 'Roast Image', and the AI will roast it, convert the roast to audio, and generate a video with a logo overlay.") with gr.Row(): image_input = gr.Image(type="filepath", label="Upload Image") with gr.Column(): output_text = gr.Textbox(label="Roast Text") audio_output = gr.Audio(label="Roast Audio") video_output = gr.Video(label="Roast Video") # Single button to handle all actions roast_button = gr.Button("Roast Image") roast_button.click(process_roast, inputs=image_input, outputs=[output_text, audio_output, video_output]) # Launch the app demo.launch(debug=True)