import os import tempfile import shutil import google.generativeai as genai import gradio as gr import requests import numpy as np import subprocess import matplotlib.pyplot as plt from matplotlib.animation import FuncAnimation import PIL.Image from gradio import processing_utils, utils # Configure Google Gemini API genai.configure(api_key=os.getenv("GEMINI_API_KEY")) # Play.ht API keys API_KEY = os.getenv('PLAY_API_KEY') USER_ID = os.getenv('PLAY_USER_ID') def upload_to_gemini(path, mime_type="image/jpeg"): file = genai.upload_file(path, mime_type=mime_type) return file def generate_roast(image_path): uploaded_file = upload_to_gemini(image_path) generation_config = { "temperature": 1, "top_p": 0.95, "top_k": 40, "max_output_tokens": 8192, "response_mime_type": "text/plain", } model = genai.GenerativeModel( model_name="gemini-1.5-flash-002", generation_config=generation_config, system_instruction="You are a professional satirist and fashion expert. Roast the profile picture.", ) chat_session = model.start_chat(history=[{"role": "user", "parts": [uploaded_file]}]) response = chat_session.send_message("Roast this image!") return response.text def text_to_speech(text): url = "https://api.play.ht/api/v2/tts/stream" payload = { "voice": "s3://voice-cloning-zero-shot/d9ff78ba-d016-47f6-b0ef-dd630f59414e/female-cs/manifest.json", "output_format": "mp3", "text": text, } headers = { "accept": "audio/mpeg", "content-type": "application/json", "Authorization": API_KEY, "X-User-ID": USER_ID } response = requests.post(url, json=payload, headers=headers) if response.status_code == 200: audio_path = "output_audio.mp3" with open(audio_path, "wb") as audio_file: audio_file.write(response.content) return audio_path else: raise ValueError(f"Error: {response.status_code} - {response.text}") # Generate waveform and overlay with image def make_waveform_overlay(audio_path, image_path): output_video_path = make_waveform(audio_path, bg_image=image_path, animate=True) return output_video_path # Full Gradio Functionality def process_image(image): roast_text = generate_roast(image) audio_path = text_to_speech(roast_text) final_video_path = make_waveform_overlay(audio_path, image) return roast_text, final_video_path # Gradio Blocks UI with gr.Blocks() as demo: gr.Markdown("# Image Roast and Waveform Video Generator") with gr.Row(): image_input = gr.Image(type="filepath", label="Upload Image") output_text = gr.Textbox(label="Roast Text") output_video = gr.Video(label="Roast Waveform Video") submit_button = gr.Button("Generate Roast Video") submit_button.click(process_image, inputs=image_input, outputs=[output_text, output_video]) # Launch the app demo.launch(debug=True)