Spaces:
Sleeping
Sleeping
import os | |
import tempfile | |
import shutil | |
import numpy as np | |
import requests | |
import google.generativeai as genai | |
import gradio as gr | |
import subprocess | |
import matplotlib.pyplot as plt | |
from matplotlib.animation import FuncAnimation | |
import PIL.Image | |
from gradio import processing_utils, utils | |
# Configure Google Gemini API | |
genai.configure(api_key=os.getenv("GEMINI_API_KEY")) | |
# Play.ht API keys | |
API_KEY = os.getenv('PLAY_API_KEY') | |
USER_ID = os.getenv('PLAY_USER_ID') | |
# Function to upload image to Gemini and get roasted text | |
def upload_to_gemini(path, mime_type="image/jpeg"): | |
file = genai.upload_file(path, mime_type=mime_type) | |
return file | |
def generate_roast(image_path): | |
uploaded_file = upload_to_gemini(image_path) | |
generation_config = { | |
"temperature": 1, | |
"top_p": 0.95, | |
"top_k": 40, | |
"max_output_tokens": 8192, | |
"response_mime_type": "text/plain", | |
} | |
model = genai.GenerativeModel( | |
model_name="gemini-1.5-flash-002", | |
generation_config=generation_config, | |
system_instruction="You are a professional satirist and fashion expert. Roast the profile picture.", | |
) | |
chat_session = model.start_chat(history=[{"role": "user", "parts": [uploaded_file]}]) | |
response = chat_session.send_message("Roast this image!") | |
return response.text | |
def text_to_speech(text): | |
url = "https://api.play.ht/api/v2/tts/stream" | |
payload = { | |
"voice": "s3://voice-cloning-zero-shot/d9ff78ba-d016-47f6-b0ef-dd630f59414e/female-cs/manifest.json", | |
"output_format": "mp3", | |
"text": text, | |
} | |
headers = { | |
"accept": "audio/mpeg", | |
"content-type": "application/json", | |
"Authorization": API_KEY, | |
"X-User-ID": USER_ID | |
} | |
response = requests.post(url, json=payload, headers=headers) | |
if response.status_code == 200: | |
audio_path = "output_audio.mp3" | |
with open(audio_path, "wb") as audio_file: | |
audio_file.write(response.content) | |
return audio_path | |
else: | |
raise ValueError(f"Error: {response.status_code} - {response.text}") | |
# Generate waveform | |
def make_waveform( | |
audio, | |
bg_color="#f3f4f6", | |
bg_image=None, | |
fg_alpha=0.75, | |
bars_color=("#fbbf24", "#ea580c"), | |
bar_count=50, | |
bar_width=0.6, | |
animate=False | |
): | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from matplotlib.animation import FuncAnimation | |
import tempfile | |
import shutil | |
import PIL.Image | |
if isinstance(audio, str): | |
audio = processing_utils.audio_from_file(audio) | |
duration = round(len(audio[1]) / audio[0], 4) | |
samples = audio[1] | |
if len(samples.shape) > 1: | |
samples = np.mean(samples, 1) | |
bins_to_pad = bar_count - (len(samples) % bar_count) | |
samples = np.pad(samples, [(0, bins_to_pad)]) | |
samples = np.reshape(samples, (bar_count, -1)) | |
samples = np.abs(samples) | |
samples = np.max(samples, 1) | |
# Color gradient for bars | |
def hex_to_rgb(hex_str): | |
return [int(hex_str[i : i + 2], 16) for i in range(1, 6, 2)] | |
def get_color_gradient(c1, c2, n): | |
c1_rgb = np.array(hex_to_rgb(c1)) / 255 | |
c2_rgb = np.array(hex_to_rgb(c2)) / 255 | |
mix_pcts = [x / (n - 1) for x in range(n)] | |
rgb_colors = [((1 - mix) * c1_rgb + (mix * c2_rgb)) for mix in mix_pcts] | |
return [ | |
"#" + "".join(f"{int(round(val * 255)):02x}" for val in item) | |
for item in rgb_colors | |
] | |
color = ( | |
bars_color | |
if isinstance(bars_color, str) | |
else get_color_gradient(bars_color[0], bars_color[1], bar_count) | |
) | |
fig, ax = plt.subplots(figsize=(5, 1), dpi=200, frameon=False) | |
fig.subplots_adjust(left=0, bottom=0, right=1, top=1) | |
plt.axis("off") | |
plt.margins(x=0) | |
barcollection = ax.bar( | |
np.arange(0, bar_count), | |
samples * 2, | |
bottom=(-1 * samples), | |
width=bar_width, | |
color=color, | |
alpha=fg_alpha, | |
) | |
# Temporary output file | |
tmp_img = tempfile.NamedTemporaryFile(suffix=".png", delete=False) | |
savefig_kwargs = {"facecolor": bg_color} if bg_image is None else {"transparent": True} | |
plt.savefig(tmp_img.name, **savefig_kwargs) | |
# Use ffmpeg to create video | |
output_video_path = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name | |
ffmpeg_cmd = [ | |
shutil.which("ffmpeg"), | |
"-loop", "1", | |
"-i", tmp_img.name, | |
"-i", audio, | |
"-c:v", "libx264", | |
"-c:a", "aac", | |
"-shortest", | |
"-y", | |
output_video_path, | |
] | |
subprocess.run(ffmpeg_cmd, check=True) | |
return output_video_path | |
# Full Gradio Interface Function | |
def process_image(image): | |
roast_text = generate_roast(image) | |
audio_path = text_to_speech(roast_text) | |
final_video_path = make_waveform(audio_path, bg_image=image, animate=True) | |
return roast_text, final_video_path | |
# Gradio Blocks UI | |
with gr.Blocks() as demo: | |
gr.Markdown("# Image Roast and Waveform Video Generator") | |
with gr.Row(): | |
image_input = gr.Image(type="filepath", label="Upload Image") | |
output_text = gr.Textbox(label="Roast Text") | |
output_video = gr.Video(label="Roast Waveform Video") | |
submit_button = gr.Button("Generate Roast Video") | |
submit_button.click(process_image, inputs=image_input, outputs=[output_text, output_video]) | |
# Launch the app | |
demo.launch(debug=True) | |