get_rizzed / app.py
1littlecoder's picture
Update app.py
0b47c5d verified
raw
history blame
5.45 kB
import os
import tempfile
import shutil
import numpy as np
import requests
import google.generativeai as genai
import gradio as gr
import subprocess
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
import PIL.Image
from gradio import processing_utils, utils
# Configure Google Gemini API
genai.configure(api_key=os.getenv("GEMINI_API_KEY"))
# Play.ht API keys
API_KEY = os.getenv('PLAY_API_KEY')
USER_ID = os.getenv('PLAY_USER_ID')
# Function to upload image to Gemini and get roasted text
def upload_to_gemini(path, mime_type="image/jpeg"):
file = genai.upload_file(path, mime_type=mime_type)
return file
def generate_roast(image_path):
uploaded_file = upload_to_gemini(image_path)
generation_config = {
"temperature": 1,
"top_p": 0.95,
"top_k": 40,
"max_output_tokens": 8192,
"response_mime_type": "text/plain",
}
model = genai.GenerativeModel(
model_name="gemini-1.5-flash-002",
generation_config=generation_config,
system_instruction="You are a professional satirist and fashion expert. Roast the profile picture.",
)
chat_session = model.start_chat(history=[{"role": "user", "parts": [uploaded_file]}])
response = chat_session.send_message("Roast this image!")
return response.text
def text_to_speech(text):
url = "https://api.play.ht/api/v2/tts/stream"
payload = {
"voice": "s3://voice-cloning-zero-shot/d9ff78ba-d016-47f6-b0ef-dd630f59414e/female-cs/manifest.json",
"output_format": "mp3",
"text": text,
}
headers = {
"accept": "audio/mpeg",
"content-type": "application/json",
"Authorization": API_KEY,
"X-User-ID": USER_ID
}
response = requests.post(url, json=payload, headers=headers)
if response.status_code == 200:
audio_path = "output_audio.mp3"
with open(audio_path, "wb") as audio_file:
audio_file.write(response.content)
return audio_path
else:
raise ValueError(f"Error: {response.status_code} - {response.text}")
# Generate waveform
def make_waveform(
audio,
bg_color="#f3f4f6",
bg_image=None,
fg_alpha=0.75,
bars_color=("#fbbf24", "#ea580c"),
bar_count=50,
bar_width=0.6,
animate=False
):
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
import tempfile
import shutil
import PIL.Image
if isinstance(audio, str):
audio = processing_utils.audio_from_file(audio)
duration = round(len(audio[1]) / audio[0], 4)
samples = audio[1]
if len(samples.shape) > 1:
samples = np.mean(samples, 1)
bins_to_pad = bar_count - (len(samples) % bar_count)
samples = np.pad(samples, [(0, bins_to_pad)])
samples = np.reshape(samples, (bar_count, -1))
samples = np.abs(samples)
samples = np.max(samples, 1)
# Color gradient for bars
def hex_to_rgb(hex_str):
return [int(hex_str[i : i + 2], 16) for i in range(1, 6, 2)]
def get_color_gradient(c1, c2, n):
c1_rgb = np.array(hex_to_rgb(c1)) / 255
c2_rgb = np.array(hex_to_rgb(c2)) / 255
mix_pcts = [x / (n - 1) for x in range(n)]
rgb_colors = [((1 - mix) * c1_rgb + (mix * c2_rgb)) for mix in mix_pcts]
return [
"#" + "".join(f"{int(round(val * 255)):02x}" for val in item)
for item in rgb_colors
]
color = (
bars_color
if isinstance(bars_color, str)
else get_color_gradient(bars_color[0], bars_color[1], bar_count)
)
fig, ax = plt.subplots(figsize=(5, 1), dpi=200, frameon=False)
fig.subplots_adjust(left=0, bottom=0, right=1, top=1)
plt.axis("off")
plt.margins(x=0)
barcollection = ax.bar(
np.arange(0, bar_count),
samples * 2,
bottom=(-1 * samples),
width=bar_width,
color=color,
alpha=fg_alpha,
)
# Temporary output file
tmp_img = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
savefig_kwargs = {"facecolor": bg_color} if bg_image is None else {"transparent": True}
plt.savefig(tmp_img.name, **savefig_kwargs)
# Use ffmpeg to create video
output_video_path = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name
ffmpeg_cmd = [
shutil.which("ffmpeg"),
"-loop", "1",
"-i", tmp_img.name,
"-i", audio,
"-c:v", "libx264",
"-c:a", "aac",
"-shortest",
"-y",
output_video_path,
]
subprocess.run(ffmpeg_cmd, check=True)
return output_video_path
# Full Gradio Interface Function
def process_image(image):
roast_text = generate_roast(image)
audio_path = text_to_speech(roast_text)
final_video_path = make_waveform(audio_path, bg_image=image, animate=True)
return roast_text, final_video_path
# Gradio Blocks UI
with gr.Blocks() as demo:
gr.Markdown("# Image Roast and Waveform Video Generator")
with gr.Row():
image_input = gr.Image(type="filepath", label="Upload Image")
output_text = gr.Textbox(label="Roast Text")
output_video = gr.Video(label="Roast Waveform Video")
submit_button = gr.Button("Generate Roast Video")
submit_button.click(process_image, inputs=image_input, outputs=[output_text, output_video])
# Launch the app
demo.launch(debug=True)