File size: 3,945 Bytes
69617e8
 
1101b16
0ed5bd6
d652179
1101b16
69617e8
 
 
 
b326bed
 
1101b16
d652179
0ed5bd6
 
 
 
0b47c5d
69617e8
 
 
 
 
0ed5bd6
69617e8
 
 
 
 
 
 
 
 
 
 
cfc76e9
0ed5bd6
 
 
 
69617e8
 
 
 
0ed5bd6
99f3aa9
 
 
69617e8
99f3aa9
69617e8
99f3aa9
1101b16
99f3aa9
 
1101b16
99f3aa9
1101b16
0ed5bd6
99f3aa9
 
1101b16
 
99f3aa9
1101b16
 
d92281e
 
0b47c5d
d652179
 
d92281e
 
 
d652179
 
 
 
 
 
 
0ed5bd6
d652179
0ed5bd6
d652179
69617e8
 
0ed5bd6
 
 
 
 
d652179
0ed5bd6
 
 
 
d92281e
 
 
 
d652179
 
69617e8
0ed5bd6
d652179
1101b16
69617e8
d652179
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import os
import google.generativeai as genai
import gradio as gr
import requests
from moviepy.editor import ImageClip, AudioFileClip

# Configure Google Gemini API
genai.configure(api_key=os.getenv("GEMINI_API_KEY"))

# Play.ht API keys
API_KEY = os.getenv('PLAY_API_KEY')
USER_ID = os.getenv('PLAY_USER_ID')

# theme selection
theme = gr.themes.Base(
    primary_hue="emerald",
)

# Function to upload image to Gemini and get roasted text
def upload_to_gemini(path, mime_type="image/jpeg"):
    file = genai.upload_file(path, mime_type=mime_type)
    return file

def generate_roast(image_path):
    # Upload the image to Gemini and get the text
    uploaded_file = upload_to_gemini(image_path)
    generation_config = {
        "temperature": 1,
        "top_p": 0.95,
        "top_k": 40,
        "max_output_tokens": 8192,
        "response_mime_type": "text/plain",
    }
    model = genai.GenerativeModel(
        model_name="gemini-1.5-flash-002",
        generation_config=generation_config,
        system_instruction="You are a professional satirist and fashion expert. You will be given a profile picture. Your duty is to roast in less than 50 words whatever is given to you in the funniest way possible!",
    )
    
    chat_session = model.start_chat(
        history=[{"role": "user", "parts": [uploaded_file]}]
    )
    response = chat_session.send_message("Roast this image!")
    return response.text

# Function to convert text to speech with Play.ht
def text_to_speech(text):
    url = "https://api.play.ht/api/v2/tts/stream"
    payload = {
        "voice": "s3://voice-cloning-zero-shot/d9ff78ba-d016-47f6-b0ef-dd630f59414e/female-cs/manifest.json",
        "output_format": "mp3",
        "text": text,
    }
    headers = {
        "accept": "audio/mpeg",
        "content-type": "application/json",
        "Authorization": API_KEY,
        "X-User-ID": USER_ID
    }
    
    response = requests.post(url, json=payload, headers=headers)
    if response.status_code == 200:
        audio_path = "output_audio.mp3"
        with open(audio_path, "wb") as audio_file:
            audio_file.write(response.content)
        return audio_path
    else:
        print(f"Error: {response.status_code} - {response.text}")
        return None  # Return None if there's an error

# Function to create video from image and audio
def generate_video(image_path, audio_path):
    if audio_path is None:
        return None  # Skip video generation if there's no valid audio file

    image_clip = ImageClip(image_path).set_duration(AudioFileClip(audio_path).duration)
    audio_clip = AudioFileClip(audio_path)
    video_clip = image_clip.set_audio(audio_clip)
    video_output_path = "output_video.mp4"
    video_clip.write_videofile(video_output_path, codec="libx264", audio_codec="aac")
    return video_output_path

# Gradio Interface
with gr.Blocks(theme=theme) as demo:
    gr.Markdown("# Image to Text-to-Speech Roasting App")
    gr.Markdown("Upload an image, and the AI will roast it, convert the roast to audio, and create a video output.")
    
    with gr.Row():
        with gr.Column():
            image_input = gr.Image(type="filepath", label="Upload Image")
        with gr.Column():
            output_text = gr.Textbox(label="Roast Text")
            audio_output = gr.Audio(label="Roast Audio")
            video_output = gr.Video(label="Roast Video")
    
    def process_image(image):
        roast_text = generate_roast(image)
        audio_path = text_to_speech(roast_text)
        
        if audio_path is None:
            return "Error generating audio. Please try again.", None, None
        
        video_path = generate_video(image, audio_path)
        return roast_text, audio_path, video_path
    
    submit_button = gr.Button("Generate Roast")
    submit_button.click(process_image, inputs=image_input, outputs=[output_text, audio_output, video_output])

# Launch the app
demo.launch(debug=True)