Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 3,074 Bytes
69617e8 1101b16 0ed5bd6 1101b16 69617e8 b326bed 1101b16 0ed5bd6 0b47c5d 69617e8 0ed5bd6 69617e8 0ed5bd6 69617e8 0ed5bd6 99f3aa9 69617e8 99f3aa9 69617e8 99f3aa9 1101b16 99f3aa9 1101b16 99f3aa9 1101b16 0ed5bd6 99f3aa9 1101b16 99f3aa9 1101b16 0ed5bd6 0b47c5d 0ed5bd6 69617e8 0ed5bd6 69617e8 0ed5bd6 1101b16 69617e8 0ed5bd6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
import os
import google.generativeai as genai
import gradio as gr
import requests
# Configure Google Gemini API
genai.configure(api_key=os.getenv("GEMINI_API_KEY"))
# Play.ht API keys
API_KEY = os.getenv('PLAY_API_KEY')
USER_ID = os.getenv('PLAY_USER_ID')
# theme selection let's go with this before the branded color
#theme={"primary_hue": "#b4fd83"}
theme = gr.themes.Base(
primary_hue="emerald",
)
# Function to upload image to Gemini and get roasted text
def upload_to_gemini(path, mime_type="image/jpeg"):
file = genai.upload_file(path, mime_type=mime_type)
return file
def generate_roast(image_path):
# Upload the image to Gemini and get the text
uploaded_file = upload_to_gemini(image_path)
generation_config = {
"temperature": 1,
"top_p": 0.95,
"top_k": 40,
"max_output_tokens": 8192,
"response_mime_type": "text/plain",
}
model = genai.GenerativeModel(
model_name="gemini-1.5-flash-002",
generation_config=generation_config,
system_instruction="You are a professional satirist and fashion expert. You will be given a profile picture. Your duty is to roast whatever is given to you in the funniest way possible!",
)
chat_session = model.start_chat(
history=[{"role": "user", "parts": [uploaded_file]}]
)
response = chat_session.send_message("Roast this image!")
return response.text
# Function to convert text to speech with Play.ht
def text_to_speech(text):
url = "https://api.play.ht/api/v2/tts/stream"
payload = {
"voice": "s3://voice-cloning-zero-shot/d9ff78ba-d016-47f6-b0ef-dd630f59414e/female-cs/manifest.json",
"output_format": "mp3",
"text": text,
}
headers = {
"accept": "audio/mpeg",
"content-type": "application/json",
"Authorization": API_KEY,
"X-User-ID": USER_ID
}
response = requests.post(url, json=payload, headers=headers)
if response.status_code == 200:
audio_path = "output_audio.mp3"
with open(audio_path, "wb") as audio_file:
audio_file.write(response.content)
return audio_path
else:
return f"Error: {response.status_code} - {response.text}"
# Gradio Interface
with gr.Blocks(theme = theme) as demo:
gr.Markdown("# Image to Text-to-Speech Roasting App")
gr.Markdown("Upload an image, and the AI will roast it and convert the roast to audio.")
with gr.Row():
with gr.Column():
image_input = gr.Image(type="filepath", label="Upload Image")
with gr.Column():
output_text = gr.Textbox(label="Roast Text")
audio_output = gr.Audio(label="Roast Audio")
def process_image(image):
roast_text = generate_roast(image)
audio_path = text_to_speech(roast_text)
return roast_text, audio_path
submit_button = gr.Button("Generate Roast")
submit_button.click(process_image, inputs=image_input, outputs=[output_text, audio_output])
# Launch the app
demo.launch(debug=True) |