Pipe1213 commited on
Commit
30c3950
·
verified ·
1 Parent(s): 53517b0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +37 -62
app.py CHANGED
@@ -1,63 +1,38 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
- )
60
-
61
-
62
- if __name__ == "__main__":
63
- demo.launch()
 
1
  import gradio as gr
2
+ import os
3
+
4
+ import json
5
+ import math
6
+ import torch
7
+ from torch import nn
8
+ from torch.nn import functional as F
9
+ from torch.utils.data import DataLoader
10
+
11
+ import commons
12
+ import utils
13
+ from data_utils import TextAudioLoader, TextAudioCollate, TextAudioSpeakerLoader, TextAudioSpeakerCollate
14
+ from models import SynthesizerTrn
15
+ from text.symbols import symbols
16
+ from text import text_to_sequence
17
+
18
+ from scipy.io.wavfile import write
19
+
20
+ def get_text(text, hps):
21
+ text_norm = text_to_sequence(text, hps.data.text_cleaners)
22
+ if hps.data.add_blank:
23
+ text_norm = commons.intersperse(text_norm, 0)
24
+ text_norm = torch.LongTensor(text_norm)
25
+ return text_norm
26
+
27
+ hps = utils.get_hparams_from_file("./configs/vctk_base.json")
28
+
29
+ net_g = SynthesizerTrn(
30
+ len(symbols),
31
+ hps.data.filter_length // 2 + 1,
32
+ hps.train.segment_size // hps.data.hop_length,
33
+ n_speakers=hps.data.n_speakers,
34
+ **hps.model)
35
+ _ = net_g.eval()
36
+
37
+ _ = utils.load_checkpoint("./fr_wa_finetuned_pho/G_125000.pth", net_g, None)
38
+