AI_Assessment_Feature_1 / chain_summary.py
Phoenix21's picture
Create chain_summary.py
c0a0835 verified
# chain_summary.py
import json
from typing import Dict
from langchain import PromptTemplate, LLMChain
from models import chat_model
final_prompt_template = PromptTemplate(
input_variables=["report", "problems", "recommendation"],
template=(
"Based on the following information:\n"
"Report:\n{report}\n\n"
"Problem Severity Percentages:\n{problems}\n\n"
"Recommended Packages:\n{recommendation}\n\n"
"Generate a short summary suitable for video narration that synthesizes this information."
)
)
final_chain = LLMChain(llm=chat_model, prompt=final_prompt_template)
def generate_final_summary(report: str, problems: Dict[str, float], recommendation: str) -> str:
summary = final_chain.run(
report=report,
problems=json.dumps(problems),
recommendation=recommendation
)
return summary.strip()
shorten_prompt_template = PromptTemplate(
input_variables=["final_summary"],
template=(
"Shorten the following summary to make it concise and engaging for video narration. "
"Ensure all key points remain intact:\n\n"
"{final_summary}\n\n"
"Shortened Summary:"
)
)
shorten_chain = LLMChain(llm=chat_model, prompt=shorten_prompt_template)
def shorten_summary(final_summary: str) -> str:
shortened = shorten_chain.run(final_summary=final_summary)
return shortened.strip()