|
|
|
import json |
|
from typing import Dict |
|
from langchain import PromptTemplate, LLMChain |
|
from models import chat_model |
|
|
|
final_prompt_template = PromptTemplate( |
|
input_variables=["report", "problems", "recommendation"], |
|
template=( |
|
"Based on the following information:\n" |
|
"Report:\n{report}\n\n" |
|
"Problem Severity Percentages:\n{problems}\n\n" |
|
"Recommended Packages:\n{recommendation}\n\n" |
|
"Generate a short summary suitable for video narration that synthesizes this information." |
|
) |
|
) |
|
final_chain = LLMChain(llm=chat_model, prompt=final_prompt_template) |
|
|
|
def generate_final_summary(report: str, problems: Dict[str, float], recommendation: str) -> str: |
|
summary = final_chain.run( |
|
report=report, |
|
problems=json.dumps(problems), |
|
recommendation=recommendation |
|
) |
|
return summary.strip() |
|
|
|
shorten_prompt_template = PromptTemplate( |
|
input_variables=["final_summary"], |
|
template=( |
|
"Shorten the following summary to make it concise and engaging for video narration. " |
|
"Ensure all key points remain intact:\n\n" |
|
"{final_summary}\n\n" |
|
"Shortened Summary:" |
|
) |
|
) |
|
shorten_chain = LLMChain(llm=chat_model, prompt=shorten_prompt_template) |
|
|
|
def shorten_summary(final_summary: str) -> str: |
|
shortened = shorten_chain.run(final_summary=final_summary) |
|
return shortened.strip() |
|
|