File size: 14,287 Bytes
b394b97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7304764
b394b97
 
7304764
 
 
 
 
 
 
 
 
 
 
b394b97
 
e90c18a
b394b97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a392f9
b394b97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f349ac
b394b97
 
 
 
7304764
 
 
b394b97
3f349ac
b394b97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1951fb
b394b97
 
3f349ac
b394b97
 
 
 
 
 
 
 
 
 
c1951fb
8a392f9
b394b97
c1951fb
8a392f9
c1951fb
b394b97
 
 
 
a3dd0cf
 
b394b97
 
 
 
 
 
 
 
 
 
e8258c1
 
b394b97
8a392f9
b394b97
 
 
 
 
 
e8258c1
 
 
 
 
3f349ac
 
e8258c1
3f349ac
 
 
 
 
 
 
 
 
 
e8258c1
 
 
3f349ac
b394b97
3f349ac
b394b97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1951fb
b394b97
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
# Code taken (and slightly adopted) from https://huggingface.co/spaces/havas79/Real-ESRGAN_Demo/blob/main/app.py - credit where credit is due. I am not showcasing code here, but demoing my own trained models ;)

import gradio as gr
import cv2
import numpy
import os
import random
from basicsr.archs.rrdbnet_arch import RRDBNet
from basicsr.utils.download_util import load_file_from_url

from realesrgan import RealESRGANer
from realesrgan.archs.srvgg_arch import SRVGGNetCompact

last_file = None
img_mode = "RGBA"
firstrun = True

def realesrgan(img, model_name, face_enhance):

    # remove last upscale when doing this new upscale to prevent memory being full
    # added firstrun variable since I was running into global declaration problems?
    if not firstrun:
        global last_file
        
        if last_file:
            print(f"Deleting {last_file} ...")
            os.remove(last_file)
            last_file = None
            
    if not img:
        return

    imgwidth, imgheight = img.size

    if imgwidth > 1000 or imgheight > 1000:
        return error("Input Image too big")

    # Define model parameters
    if model_name == '4xNomos8kSC':
        model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
        netscale = 4
    elif model_name == '4xHFA2k':
        model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
        netscale = 4
    elif model_name == '4xLSDIR':
        model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
        netscale = 4
    elif model_name == '4xLSDIRplusN':
        model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
        netscale = 4
    elif model_name == '4xLSDIRplusC':
        model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
        netscale = 4
    elif model_name == '4xLSDIRplusR':
        model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
        netscale = 4
    elif model_name == '2xParimgCompact':
        model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=2, act_type='prelu')
        netscale = 2
    elif model_name == '2xHFA2kCompact':
        model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=2, act_type='prelu')
        netscale = 2
    elif model_name == '4xLSDIRCompactN':
        model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type='prelu')
        netscale = 4
    elif model_name == '4xLSDIRCompactC3':
        model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type='prelu')
        netscale = 4
    elif model_name == '4xLSDIRCompactR3':
        model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type='prelu')
        netscale = 4

    # Determine model paths
    model_path = os.path.join('weights', model_name + '.pth')

    # Restorer Class
    upsampler = RealESRGANer(
        scale=netscale,
        model_path=model_path,
        dni_weight=None,
        model=model,
        tile=128,
        tile_pad=10,
        pre_pad=10,
        half=False,
        gpu_id=None,
    )

    # Use GFPGAN for face enhancement
    if face_enhance:
        from gfpgan import GFPGANer
        face_enhancer = GFPGANer(
            model_path='https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth',
            upscale=netscale,
            arch='clean',
            channel_multiplier=2,
            bg_upsampler=upsampler)

    # Convert the input PIL image to cv2 image, so that it can be processed by realesrgan
    cv_img = numpy.array(img)
    img = cv2.cvtColor(cv_img, cv2.COLOR_RGBA2BGRA)

    # Apply restoration
    try:
        if face_enhance:
            _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
        else:
            output, _ = upsampler.enhance(img, netscale)
    except RuntimeError as error:
        print('Error', error)
        print('If you encounter CUDA out of memory, try to set --tile with a smaller number.')
    else:
        # Save restored image and return it to the output Image component
        extension = 'jpg'
        out_filename = f"output_{rnd_string(16)}.{extension}"
        cv2.imwrite(out_filename, output)
        global last_file
        last_file = out_filename
        if firstrun:
            global firstrun
            firstrun = False
        return out_filename
        

def rnd_string(x):
    """Returns a string of 'x' random characters
    """
    characters = "abcdefghijklmnopqrstuvwxyz_0123456789"
    result = "".join((random.choice(characters)) for i in range(x))
    return result


def reset():
    """Resets the Image components of the Gradio interface and deletes
    the last processed image
    """
    global last_file
    if last_file:
        print(f"Deleting {last_file} ...")
        os.remove(last_file)
        last_file = None
    return gr.update(value=None), gr.update(value=None)


def has_transparency(img):
    """This function works by first checking to see if a "transparency" property is defined
    in the image's info -- if so, we return "True". Then, if the image is using indexed colors
    (such as in GIFs), it gets the index of the transparent color in the palette
    (img.info.get("transparency", -1)) and checks if it's used anywhere in the canvas
    (img.getcolors()). If the image is in RGBA mode, then presumably it has transparency in
    it, but it double-checks by getting the minimum and maximum values of every color channel
    (img.getextrema()), and checks if the alpha channel's smallest value falls below 255.
    https://stackoverflow.com/questions/43864101/python-pil-check-if-image-is-transparent
    """
    if img.info.get("transparency", None) is not None:
        return True
    if img.mode == "P":
        transparent = img.info.get("transparency", -1)
        for _, index in img.getcolors():
            if index == transparent:
                return True
    elif img.mode == "RGBA":
        extrema = img.getextrema()
        if extrema[3][0] < 255:
            return True
    return False


def image_properties(img):
    """Returns the dimensions (width and height) and color mode of the input image and
    also sets the global img_mode variable to be used by the realesrgan function
    """
    global img_mode
    if img:
        if has_transparency(img):
            img_mode = "RGBA"
        else:
            img_mode = "RGB"
        properties = f"Width: {img.size[0]}, Height: {img.size[1]}  |  Color Mode: {img_mode}"
        return properties


def main():
    # Gradio Interface
    with gr.Blocks(title="Self-trained ESRGAN models demo", theme="dark") as demo:
        
        gr.Markdown(
            """# <div align="center"> Upscale image </div> 
        Here I demo some of my self-trained models (only those trained on the SRVGGNet or RRDBNet archs). All my self-trained models can be found on the [openmodeldb](https://openmodeldb.info/?q=Helaman&sort=date-desc) or on [my github repo](https://github.com/phhofm/models).
        """
        )

        with gr.Group():
            with gr.Group():
                model_name = gr.Dropdown(label="Model to be used",
                                         choices=["2xHFA2kCompact", "2xParimgCompact", "4xLSDIRCompactN", "4xLSDIRCompactC3", "4xLSDIRCompactR3", "4xNomos8kSC", "4xHFA2k", "4xLSDIR", "4xLSDIRplusN", "4xLSDIRplusC", "4xLSDIRplusR"], value="4xLSDIRCompactC3", 
                                         info="See model infos at the bottom of this page")
                face_enhance = gr.Checkbox(label="Face Enhancement using GFPGAN (Doesn't work for anime images)",value=False, show_label=True)

        with gr.Group():
                input_image = gr.Image(label="Source Image", type="pil", image_mode="RGB")
                input_image_properties = gr.Textbox(label="Image Properties - Demo will throw error if input image has either width or height > 1000. Output download is jpg for smaller size. Use models locally to circument these limits.", max_lines=1)
        with gr.Group():
            output_image = gr.Image(label="Upscaled Image", type="pil", image_mode="RGB", interactive=False)
            output_image_properties = gr.Textbox(label="Image Properties", max_lines=1)
        with gr.Row():
            upscale_btn = gr.Button("Upscale")
            reset_btn = gr.Button("Reset")
        with gr.Group():
            gr.Markdown(""" **Examples are not pre-cached. You need to press the Upscale Button after selecting one**""")
            gr.Examples(examples="examples",inputs=[input_image, model_name, face_enhance],outputs=output_image,fn=realesrgan, cache_examples=False)
            gr.Markdown(
    """
    **Model infos**  
    *SRVGGNetCompact models - in general faster, but less powerful, than RRDBNet*  
    2xHFA2kCompact - use for upscaling anime images 2x, faster than 4xHFA2k but less powerful (SRVGGNetCompact)    
    2xParimgCompact - upscaling photos 2x, fast (SRVGGNetCompact)  
    4xLSDIRCompactN - upscale a good quality photo (no degradations) 4x, faster than 4xLSDIRN but less powerful (SRVGGNetCompact)  
    4xLSDIRCompactC3 - upscale a jpg compressed photo 4x, fast (SRVGGNetCompact)  
    4xLSDIRCompactR3 - upscale a degraded photo 4x, fast (SRVGGNetCompact) (too strong, best used for interpolation like 4xLSDIRCompactN (or C) 75% 4xLSDIRCompactR3 25% to add little degradation handling to the previous one)  



    *RRDBNet models - in general more powerful than SRVGGNetCompact, but very slow in this demo*  
    4xNomos8kSC - use for upscaling photos 4x or can also be tried out on anime   
    4xHFA2k - use for upscaling anime images 4x   
    4xLSDIR - upscale a good quality photo (no degradation) 4x  
    4xLSDIRplusN - upscale a good quality photo (no degradation) 4x  
    4xLSDIRplusC - upscale a jpg compressed photo 4x   
    4xLSDIRplusR - upscale a degraded photo 4x (too strong, best used for interpolation like 4xLSDIRplusN (or C) 75% 4xLSDIRplusR 25% to add little degradation handling to the previous one)    



    *Models that I trained that are not featured here, but available on [openmodeldb](https://openmodeldb.info/?q=Helaman&sort=date-desc) or on [github](https://github.com/phhofm/models):*   
    4xNomos8kSCHAT-L - Photo upscaler (handles little bit of jpg compression and blur), [HAT-L](https://github.com/XPixelGroup/HAT) model (good output but very slow since huge)     
    4xNomos8kSCHAT-S - Photo upscaler (handles little bit of jpg compression and blur), [HAT-S](https://github.com/XPixelGroup/HAT) model   
    4xNomos8kSCSRFormer - Photo upscaler (handles little bit of jpg compression and blur), [SRFormer](https://github.com/HVision-NKU/SRFormer) base model (also good and slow since also big model)    
    2xHFA2kAVCOmniSR - Anime frame upscaler that handles AVC (h264) video compression, [OmniSR](https://github.com/Francis0625/Omni-SR) model  
    2xHFA2kAVCOmniSR_Sharp - Anime frame upscaler that handles AVC (h264) video compression with sharper outputs, [OmniSR](https://github.com/Francis0625/Omni-SR) model  
    4xHFA2kAVCSRFormer_light - Anime frame upscaler that handles AVC (h264) video compression, [SRFormer](https://github.com/HVision-NKU/SRFormer) lightweight model  
    2xHFA2kAVCEDSR_M - Anime frame upscaler that handles AVC (h264) video compression, [EDSR-M](https://github.com/LimBee/NTIRE2017) model  
    2xHFA2kAVCCompact - Anime frame upscaler that handles AVC (h264) video compression, [SRVGGNet](https://github.com/xinntao/Real-ESRGAN) (also called Real-ESRGAN Compact) model  
    4xHFA2kLUDVAESwinIR_light - Anime image upscaler that handles various realistic degradations, [SwinIR](https://github.com/JingyunLiang/SwinIR) light model  
    4xHFA2kLUDVAEGRL_small - Anime image upscaler that handles various realistic degradations, [GRL](https://github.com/ofsoundof/GRL-Image-Restoration) small model  
    4xHFA2kLUDVAESRFormer_light - Anime image upscaler that handles various realistic degradations, [SRFormer](https://github.com/HVision-NKU/SRFormer) light model  
    4xLexicaHAT - An AI generated image upscaler, does not handle any degradations, [HAT](https://github.com/XPixelGroup/HAT) base model  
    2xLexicaSwinIR - An AI generated image upscaler, does not handle any degradations, [SwinIR](https://github.com/JingyunLiang/SwinIR) base model  
    2xLexicaRRDBNet - An AI generated image upscaler, does not handle any degradations, RRDBNet base model  
    2xLexicaRRDBNet_Sharp - An AI generated image upscaler with sharper outputs, does not handle any degradations, RRDBNet base model  
    4xHFA2kLUDVAESAFMN - dropped model since there were artifacts on the outputs when training with [SAFMN](https://github.com/sunny2109/SAFMN) arch  



    *The following are not models I had trained, but rather interpolations I had created, they are available on my [repo](https://github.com/phhofm/models) and can be tried out locally with chaiNNer:*  
    4xLSDIRplus (4xLSDIRplusC + 4xLSDIRplusR)
    4xLSDIRCompact3 (4xLSDIRCompactC3 + 4xLSDIRCompactR3)  
    4xLSDIRCompact2 (4xLSDIRCompactC2 + 4xLSDIRCompactR2)  
    4xInt-Ultracri (UltraSharp + Remacri)  
    4xInt-Superscri (Superscale + Remacri)  
    4xInt-Siacri(Siax + Remacri)  
    4xInt-RemDF2K (Remacri + RealSR_DF2K_JPEG)  
    4xInt-RemArt (Remacri + VolArt)  
    4xInt-RemAnime (Remacri + AnimeSharp)  
    4xInt-RemacRestore (Remacri + UltraMix_Restore)  
    4xInt-AnimeArt (AnimeSharp + VolArt)  
    2xInt-LD-AnimeJaNai (LD-Anime + AnimeJaNai)  
    """)

        # Event listeners:
        input_image.change(fn=image_properties, inputs=input_image, outputs=input_image_properties)
        output_image.change(fn=image_properties, inputs=output_image, outputs=output_image_properties)
        upscale_btn.click(fn=realesrgan, inputs=[input_image, model_name, face_enhance], outputs=output_image)
        reset_btn.click(fn=reset, inputs=[], outputs=[output_image, input_image])

    demo.launch()


if __name__ == "__main__":
    main()