|
import os |
|
import sys |
|
|
|
import fire |
|
import gradio as gr |
|
import torch |
|
import transformers |
|
from peft import PeftModel |
|
from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer |
|
|
|
from typing import Union |
|
import re |
|
|
|
|
|
class Prompter(object): |
|
def generate_prompt( |
|
self, |
|
instruction: str, |
|
label: Union[None, str] = None, |
|
) -> str: |
|
res = f"{instruction}\nAnswer: " |
|
|
|
if label: |
|
res = f"{res}{label}" |
|
|
|
return res |
|
|
|
def get_response(self, output: str) -> str: |
|
return ( |
|
output.split("Answer:")[1] |
|
.strip() |
|
.replace("/", "\u00F7") |
|
.replace("*", "\u00D7") |
|
) |
|
|
|
|
|
load_8bit = False |
|
base_model = "nickypro/tinyllama-15M" |
|
lora_weights = "./chkp" |
|
share_gradio = True |
|
|
|
if torch.cuda.is_available(): |
|
device = "cuda" |
|
else: |
|
device = "cpu" |
|
|
|
try: |
|
if torch.backends.mps.is_available(): |
|
device = "mps" |
|
except: |
|
pass |
|
|
|
prompter = Prompter() |
|
|
|
tokenizer = LlamaTokenizer.from_pretrained("hf-internal-testing/llama-tokenizer") |
|
if device == "cuda": |
|
model = LlamaForCausalLM.from_pretrained( |
|
base_model, |
|
load_in_8bit=load_8bit, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
model = PeftModel.from_pretrained( |
|
model, |
|
lora_weights, |
|
torch_dtype=torch.float16, |
|
device_map={"": 0}, |
|
) |
|
elif device == "mps": |
|
model = LlamaForCausalLM.from_pretrained( |
|
base_model, |
|
device_map={"": device}, |
|
torch_dtype=torch.float16, |
|
) |
|
model = PeftModel.from_pretrained( |
|
model, |
|
lora_weights, |
|
device_map={"": device}, |
|
torch_dtype=torch.float16, |
|
) |
|
else: |
|
model = LlamaForCausalLM.from_pretrained( |
|
base_model, device_map={"": device}, low_cpu_mem_usage=True |
|
) |
|
model = PeftModel.from_pretrained( |
|
model, |
|
lora_weights, |
|
device_map={"": device}, |
|
) |
|
|
|
|
|
|
|
|
|
model.eval() |
|
if torch.__version__ >= "2" and sys.platform != "win32": |
|
model = torch.compile(model) |
|
|
|
|
|
def evaluate( |
|
instruction, |
|
temperature=0.1, |
|
top_p=0.75, |
|
top_k=40, |
|
num_beams=4, |
|
max_new_tokens=15, |
|
stream_output=True, |
|
**kwargs, |
|
): |
|
prompt = prompter.generate_prompt(instruction) |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
input_ids = inputs["input_ids"].to(device) |
|
generation_config = GenerationConfig( |
|
temperature=temperature, |
|
top_p=top_p, |
|
top_k=top_k, |
|
num_beams=num_beams, |
|
**kwargs, |
|
) |
|
|
|
generate_params = { |
|
"input_ids": input_ids, |
|
"generation_config": generation_config, |
|
"return_dict_in_generate": True, |
|
"output_scores": True, |
|
"max_new_tokens": max_new_tokens, |
|
} |
|
|
|
|
|
with torch.no_grad(): |
|
generation_output = model.generate( |
|
input_ids=input_ids, |
|
generation_config=generation_config, |
|
return_dict_in_generate=True, |
|
output_scores=True, |
|
max_new_tokens=max_new_tokens, |
|
) |
|
s = generation_output.sequences[0] |
|
output = tokenizer.decode(s, skip_special_tokens=True).strip() |
|
yield prompter.get_response(output) |
|
|
|
|
|
gr.Interface( |
|
fn=evaluate, |
|
inputs=[ |
|
gr.components.Textbox( |
|
lines=1, |
|
label="Arithmetic", |
|
placeholder="What is 63303235 + 20239503", |
|
), |
|
gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Temperature"), |
|
gr.components.Slider(minimum=0, maximum=1, value=0.75, label="Top p"), |
|
gr.components.Slider(minimum=0, maximum=100, step=1, value=40, label="Top k"), |
|
gr.components.Slider(minimum=1, maximum=4, step=1, value=4, label="Beams"), |
|
gr.components.Slider( |
|
minimum=1, maximum=1024, step=1, value=512, label="Max tokens" |
|
), |
|
], |
|
outputs=[ |
|
gr.Textbox( |
|
lines=5, |
|
label="Output", |
|
) |
|
], |
|
title="test model", |
|
description="Это пример реализации из goat", |
|
).queue().launch(share=share_gradio) |
|
|