# -*- coding: utf-8 -*- # @Organization : insightface.ai # @Author : Jia Guo # @Time : 2021-09-18 # @Function : import os import cv2 import onnx import onnxruntime import numpy as np import default_paths as dp from .face_alignment import norm_crop2 class ArcFace: def __init__(self, model_file=None, provider=['CUDAExecutionProvider'], session_options=None): assert model_file is not None self.model_file = model_file self.taskname = 'recognition' find_sub = False find_mul = False model = onnx.load(self.model_file) graph = model.graph for nid, node in enumerate(graph.node[:8]): #print(nid, node.name) if node.name.startswith('Sub') or node.name.startswith('_minus'): find_sub = True if node.name.startswith('Mul') or node.name.startswith('_mul'): find_mul = True if find_sub and find_mul: #mxnet arcface model input_mean = 0.0 input_std = 1.0 else: input_mean = 127.5 input_std = 127.5 self.input_mean = input_mean self.input_std = input_std #print('input mean and std:', self.input_mean, self.input_std) self.session_options = session_options if self.session_options is None: self.session_options = onnxruntime.SessionOptions() self.session = onnxruntime.InferenceSession(self.model_file, providers=provider, sess_options=self.session_options) input_cfg = self.session.get_inputs()[0] input_shape = input_cfg.shape input_name = input_cfg.name self.input_size = tuple(input_shape[2:4][::-1]) self.input_shape = input_shape outputs = self.session.get_outputs() output_names = [] for out in outputs: output_names.append(out.name) self.input_name = input_name self.output_names = output_names assert len(self.output_names)==1 self.output_shape = outputs[0].shape def prepare(self, ctx_id, **kwargs): if ctx_id<0: self.session.set_providers(['CPUExecutionProvider']) def get(self, img, kps): aimg, matrix = norm_crop2(img, landmark=kps, image_size=self.input_size[0]) embedding = self.get_feat(aimg).flatten() return embedding def compute_sim(self, feat1, feat2): from numpy.linalg import norm feat1 = feat1.ravel() feat2 = feat2.ravel() sim = np.dot(feat1, feat2) / (norm(feat1) * norm(feat2)) return sim def get_feat(self, imgs): if not isinstance(imgs, list): imgs = [imgs] input_size = self.input_size blob = cv2.dnn.blobFromImages(imgs, 1.0 / self.input_std, input_size, (self.input_mean, self.input_mean, self.input_mean), swapRB=True) net_out = self.session.run(self.output_names, {self.input_name: blob})[0] return net_out def forward(self, batch_data): blob = (batch_data - self.input_mean) / self.input_std net_out = self.session.run(self.output_names, {self.input_name: blob})[0] return net_out