import cv2 import torch import onnxruntime import numpy as np import threading import time # gfpgan converted to onnx # using https://github.com/xuanandsix/GFPGAN-onnxruntime-demo # same inference code for GFPGANv1.2, GFPGANv1.3, GFPGANv1.4 lock = threading.Lock() class GFPGAN: def __init__(self, model_path="GFPGANv1.4.onnx", provider=["CPUExecutionProvider"], session_options=None): self.session_options = session_options if self.session_options is None: self.session_options = onnxruntime.SessionOptions() self.session = onnxruntime.InferenceSession(model_path, sess_options=self.session_options, providers=provider) self.resolution = self.session.get_inputs()[0].shape[-2:] def preprocess(self, img): img = cv2.resize(img, self.resolution, interpolation=cv2.INTER_LINEAR) img = img.astype(np.float32)[:,:,::-1] / 255.0 img = img.transpose((2, 0, 1)) img = (img - 0.5) / 0.5 img = np.expand_dims(img, axis=0).astype(np.float32) return img def postprocess(self, img): img = (img.transpose(1,2,0).clip(-1,1) + 1) * 0.5 img = (img * 255)[:,:,::-1] img = img.clip(0, 255).astype('uint8') return img def enhance(self, img): img = self.preprocess(img) with lock: output = self.session.run(None, {'input':img})[0][0] output = self.postprocess(output) return output