Peleck's picture
Initial
fa8453f
import cv2
import torch
import onnxruntime
import numpy as np
import threading
import time
# gfpgan converted to onnx
# using https://github.com/xuanandsix/GFPGAN-onnxruntime-demo
# same inference code for GFPGANv1.2, GFPGANv1.3, GFPGANv1.4
lock = threading.Lock()
class GFPGAN:
def __init__(self, model_path="GFPGANv1.4.onnx", provider=["CPUExecutionProvider"], session_options=None):
self.session_options = session_options
if self.session_options is None:
self.session_options = onnxruntime.SessionOptions()
self.session = onnxruntime.InferenceSession(model_path, sess_options=self.session_options, providers=provider)
self.resolution = self.session.get_inputs()[0].shape[-2:]
def preprocess(self, img):
img = cv2.resize(img, self.resolution, interpolation=cv2.INTER_LINEAR)
img = img.astype(np.float32)[:,:,::-1] / 255.0
img = img.transpose((2, 0, 1))
img = (img - 0.5) / 0.5
img = np.expand_dims(img, axis=0).astype(np.float32)
return img
def postprocess(self, img):
img = (img.transpose(1,2,0).clip(-1,1) + 1) * 0.5
img = (img * 255)[:,:,::-1]
img = img.clip(0, 255).astype('uint8')
return img
def enhance(self, img):
img = self.preprocess(img)
with lock:
output = self.session.run(None, {'input':img})[0][0]
output = self.postprocess(output)
return output