File size: 9,272 Bytes
fa8453f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import cv2
import base64
import numpy as np


def laplacian_blending(A, B, m, num_levels=7):
    assert A.shape == B.shape
    assert B.shape == m.shape
    height = m.shape[0]
    width = m.shape[1]
    size_list = np.array([4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192])
    size = size_list[np.where(size_list > max(height, width))][0]
    GA = np.zeros((size, size, 3), dtype=np.float32)
    GA[:height, :width, :] = A
    GB = np.zeros((size, size, 3), dtype=np.float32)
    GB[:height, :width, :] = B
    GM = np.zeros((size, size, 3), dtype=np.float32)
    GM[:height, :width, :] = m
    gpA = [GA]
    gpB = [GB]
    gpM = [GM]
    for i in range(num_levels):
        GA = cv2.pyrDown(GA)
        GB = cv2.pyrDown(GB)
        GM = cv2.pyrDown(GM)
        gpA.append(np.float32(GA))
        gpB.append(np.float32(GB))
        gpM.append(np.float32(GM))
    lpA  = [gpA[num_levels-1]]
    lpB  = [gpB[num_levels-1]]
    gpMr = [gpM[num_levels-1]]
    for i in range(num_levels-1,0,-1):
        LA = np.subtract(gpA[i-1], cv2.pyrUp(gpA[i]))
        LB = np.subtract(gpB[i-1], cv2.pyrUp(gpB[i]))
        lpA.append(LA)
        lpB.append(LB)
        gpMr.append(gpM[i-1])
    LS = []
    for la,lb,gm in zip(lpA,lpB,gpMr):
        ls = la * gm + lb * (1.0 - gm)
        LS.append(ls)
    ls_ = LS[0]
    for i in range(1,num_levels):
        ls_ = cv2.pyrUp(ls_)
        ls_ = cv2.add(ls_, LS[i])
    ls_ = ls_[:height, :width, :]
    #ls_ = (ls_ - np.min(ls_)) * (255.0 / (np.max(ls_) - np.min(ls_)))
    return ls_.clip(0, 255)


def mask_crop(mask, crop):
    top, bottom, left, right = crop
    shape = mask.shape
    top = int(top)
    bottom = int(bottom)
    if top + bottom < shape[1]:
        if top > 0: mask[:top, :] = 0
        if bottom > 0: mask[-bottom:, :] = 0

    left = int(left)
    right = int(right)
    if left + right < shape[0]:
        if left > 0: mask[:, :left] = 0
        if right > 0: mask[:, -right:] = 0

    return mask

def create_image_grid(images, size=128):
    num_images = len(images)
    num_cols = int(np.ceil(np.sqrt(num_images)))
    num_rows = int(np.ceil(num_images / num_cols))
    grid = np.zeros((num_rows * size, num_cols * size, 3), dtype=np.uint8)

    for i, image in enumerate(images):
        row_idx = (i // num_cols) * size
        col_idx = (i % num_cols) * size
        image = cv2.resize(image.copy(), (size,size))
        if image.dtype != np.uint8:
            image = (image.astype('float32') * 255).astype('uint8')
        if image.ndim == 2:
            image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
        grid[row_idx:row_idx + size, col_idx:col_idx + size] = image

    return grid


def paste_to_whole(foreground, background, matrix, mask=None, crop_mask=(0,0,0,0), blur_amount=0.1, erode_amount = 0.15, blend_method='linear'):
    inv_matrix = cv2.invertAffineTransform(matrix)
    fg_shape = foreground.shape[:2]
    bg_shape = (background.shape[1], background.shape[0])
    foreground = cv2.warpAffine(foreground, inv_matrix, bg_shape, borderValue=0.0, borderMode=cv2.BORDER_REPLICATE)

    if mask is None:
        mask = np.full(fg_shape, 1., dtype=np.float32)
        mask = mask_crop(mask, crop_mask)
        mask = cv2.warpAffine(mask, inv_matrix, bg_shape, borderValue=0.0)
    else:
        assert fg_shape == mask.shape[:2], "foreground & mask shape mismatch!"
        mask = mask_crop(mask, crop_mask).astype('float32')
        mask = cv2.warpAffine(mask, inv_matrix, (background.shape[1], background.shape[0]), borderValue=0.0)

    _mask = mask.copy()
    _mask[_mask > 0.05] = 1.
    non_zero_points = cv2.findNonZero(_mask)
    _, _, w, h = cv2.boundingRect(non_zero_points)
    mask_size = int(np.sqrt(w * h))

    if erode_amount > 0:
        kernel_size = max(int(mask_size * erode_amount), 1)
        structuring_element = cv2.getStructuringElement(cv2.MORPH_RECT, (kernel_size, kernel_size))
        mask = cv2.erode(mask, structuring_element)

    if blur_amount > 0:
        kernel_size = max(int(mask_size * blur_amount), 3)
        if kernel_size % 2 == 0:
            kernel_size += 1
        mask = cv2.GaussianBlur(mask, (kernel_size, kernel_size), 0)

    mask = np.tile(np.expand_dims(mask, axis=-1), (1, 1, 3))

    if blend_method == 'laplacian':
        composite_image = laplacian_blending(foreground, background, mask.clip(0,1), num_levels=4)
    else:
        composite_image = mask * foreground + (1 - mask) * background

    return composite_image.astype("uint8").clip(0, 255)


def image_mask_overlay(img, mask):
    img = img.astype('float32') / 255.
    img *= (mask + 0.25).clip(0, 1)
    img = np.clip(img * 255., 0., 255.).astype('uint8')
    return img


def resize_with_padding(img, expected_size=(640, 360), color=(0, 0, 0), max_flip=False):
    original_height, original_width = img.shape[:2]

    if max_flip and original_height > original_width:
        expected_size = (expected_size[1], expected_size[0])

    aspect_ratio = original_width / original_height
    new_width = expected_size[0]
    new_height = int(new_width / aspect_ratio)

    if new_height > expected_size[1]:
        new_height = expected_size[1]
        new_width = int(new_height * aspect_ratio)

    resized_img = cv2.resize(img, (new_width, new_height), interpolation=cv2.INTER_AREA)
    canvas = cv2.copyMakeBorder(resized_img,
                                top=(expected_size[1] - new_height) // 2,
                                bottom=(expected_size[1] - new_height + 1) // 2,
                                left=(expected_size[0] - new_width) // 2,
                                right=(expected_size[0] - new_width + 1) // 2,
                                borderType=cv2.BORDER_CONSTANT, value=color)
    return canvas


def create_image_grid(images, size=128):
    num_images = len(images)
    num_cols = int(np.ceil(np.sqrt(num_images)))
    num_rows = int(np.ceil(num_images / num_cols))
    grid = np.zeros((num_rows * size, num_cols * size, 3), dtype=np.uint8)

    for i, image in enumerate(images):
        row_idx = (i // num_cols) * size
        col_idx = (i % num_cols) * size
        image = cv2.resize(image.copy(), (size,size))
        if image.dtype != np.uint8:
            image = (image.astype('float32') * 255).astype('uint8')
        if image.ndim == 2:
            image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
        grid[row_idx:row_idx + size, col_idx:col_idx + size] = image

    return grid


def image_to_html(img, size=(640, 360), extension="jpg"):
    if img is not None:
        img = resize_with_padding(img, expected_size=size)
        buffer = cv2.imencode(f".{extension}", img)[1]
        base64_data = base64.b64encode(buffer.tobytes())
        imgbs64 = f"data:image/{extension};base64," + base64_data.decode("utf-8")
        html = '<div style="display: flex; justify-content: center; align-items: center; width: 100%;">'
        html += f'<img src={imgbs64} alt="No Preview" style="max-width: 100%; max-height: 100%;">'
        html += '</div>'
        return html
    return None


def mix_two_image(a, b, opacity=1.):
    a_dtype = a.dtype
    b_dtype = b.dtype
    a = a.astype('float32')
    b = b.astype('float32')
    a = cv2.resize(a, (b.shape[0], b.shape[1]))
    opacity = min(max(opacity, 0.), 1.)
    mixed_img = opacity * b + (1 - opacity) * a
    return mixed_img.astype(a_dtype)

resolution_map = {
        "Original": None,
        "240p": (426, 240),
        "360p": (640, 360),
        "480p": (854, 480),
        "720p": (1280, 720),
        "1080p": (1920, 1080),
        "1440p": (2560, 1440),
        "2160p": (3840, 2160),
    }

def resize_image_by_resolution(img, quality):
    resolution = resolution_map.get(quality, None)
    if resolution is None:
        return img

    h, w = img.shape[:2]
    if h > w:
        ratio = resolution[0] / h
    else:
        ratio = resolution[0] / w

    new_h, new_w = int(h * ratio), int(w * ratio)
    img = cv2.resize(img, (new_w, new_h), interpolation=cv2.INTER_AREA)
    return img

def fast_pil_encode(pil_image):
    image_arr = np.asarray(pil_image)[:,:,::-1]
    buffer = cv2.imencode('.jpg', image_arr)[1]
    base64_data = base64.b64encode(buffer.tobytes())
    return "data:image/jpg;base64," + base64_data.decode("utf-8")

def fast_numpy_encode(img_array):
    buffer = cv2.imencode('.jpg', img_array)[1]
    base64_data = base64.b64encode(buffer.tobytes())
    return "data:image/jpg;base64," + base64_data.decode("utf-8")

crf_quality_by_resolution = {
    240: {"poor": 45, "low": 35, "medium": 28, "high": 23, "best": 20},
    360: {"poor": 35, "low": 28, "medium": 23, "high": 20, "best": 18},
    480: {"poor": 28, "low": 23, "medium": 20, "high": 18, "best": 16},
    720: {"poor": 23, "low": 20, "medium": 18, "high": 16, "best": 14},
    1080: {"poor": 20, "low": 18, "medium": 16, "high": 14, "best": 12},
    1440: {"poor": 18, "low": 16, "medium": 14, "high": 12, "best": 10},
    2160: {"poor": 16, "low": 14, "medium": 12, "high": 10, "best": 8}
}

def get_crf_for_resolution(resolution, quality):
    available_resolutions = list(crf_quality_by_resolution.keys())
    closest_resolution = min(available_resolutions, key=lambda x: abs(x - resolution))
    return crf_quality_by_resolution[closest_resolution][quality]