Spaces:
Build error
Build error
File size: 9,272 Bytes
fa8453f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
import cv2
import base64
import numpy as np
def laplacian_blending(A, B, m, num_levels=7):
assert A.shape == B.shape
assert B.shape == m.shape
height = m.shape[0]
width = m.shape[1]
size_list = np.array([4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192])
size = size_list[np.where(size_list > max(height, width))][0]
GA = np.zeros((size, size, 3), dtype=np.float32)
GA[:height, :width, :] = A
GB = np.zeros((size, size, 3), dtype=np.float32)
GB[:height, :width, :] = B
GM = np.zeros((size, size, 3), dtype=np.float32)
GM[:height, :width, :] = m
gpA = [GA]
gpB = [GB]
gpM = [GM]
for i in range(num_levels):
GA = cv2.pyrDown(GA)
GB = cv2.pyrDown(GB)
GM = cv2.pyrDown(GM)
gpA.append(np.float32(GA))
gpB.append(np.float32(GB))
gpM.append(np.float32(GM))
lpA = [gpA[num_levels-1]]
lpB = [gpB[num_levels-1]]
gpMr = [gpM[num_levels-1]]
for i in range(num_levels-1,0,-1):
LA = np.subtract(gpA[i-1], cv2.pyrUp(gpA[i]))
LB = np.subtract(gpB[i-1], cv2.pyrUp(gpB[i]))
lpA.append(LA)
lpB.append(LB)
gpMr.append(gpM[i-1])
LS = []
for la,lb,gm in zip(lpA,lpB,gpMr):
ls = la * gm + lb * (1.0 - gm)
LS.append(ls)
ls_ = LS[0]
for i in range(1,num_levels):
ls_ = cv2.pyrUp(ls_)
ls_ = cv2.add(ls_, LS[i])
ls_ = ls_[:height, :width, :]
#ls_ = (ls_ - np.min(ls_)) * (255.0 / (np.max(ls_) - np.min(ls_)))
return ls_.clip(0, 255)
def mask_crop(mask, crop):
top, bottom, left, right = crop
shape = mask.shape
top = int(top)
bottom = int(bottom)
if top + bottom < shape[1]:
if top > 0: mask[:top, :] = 0
if bottom > 0: mask[-bottom:, :] = 0
left = int(left)
right = int(right)
if left + right < shape[0]:
if left > 0: mask[:, :left] = 0
if right > 0: mask[:, -right:] = 0
return mask
def create_image_grid(images, size=128):
num_images = len(images)
num_cols = int(np.ceil(np.sqrt(num_images)))
num_rows = int(np.ceil(num_images / num_cols))
grid = np.zeros((num_rows * size, num_cols * size, 3), dtype=np.uint8)
for i, image in enumerate(images):
row_idx = (i // num_cols) * size
col_idx = (i % num_cols) * size
image = cv2.resize(image.copy(), (size,size))
if image.dtype != np.uint8:
image = (image.astype('float32') * 255).astype('uint8')
if image.ndim == 2:
image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
grid[row_idx:row_idx + size, col_idx:col_idx + size] = image
return grid
def paste_to_whole(foreground, background, matrix, mask=None, crop_mask=(0,0,0,0), blur_amount=0.1, erode_amount = 0.15, blend_method='linear'):
inv_matrix = cv2.invertAffineTransform(matrix)
fg_shape = foreground.shape[:2]
bg_shape = (background.shape[1], background.shape[0])
foreground = cv2.warpAffine(foreground, inv_matrix, bg_shape, borderValue=0.0, borderMode=cv2.BORDER_REPLICATE)
if mask is None:
mask = np.full(fg_shape, 1., dtype=np.float32)
mask = mask_crop(mask, crop_mask)
mask = cv2.warpAffine(mask, inv_matrix, bg_shape, borderValue=0.0)
else:
assert fg_shape == mask.shape[:2], "foreground & mask shape mismatch!"
mask = mask_crop(mask, crop_mask).astype('float32')
mask = cv2.warpAffine(mask, inv_matrix, (background.shape[1], background.shape[0]), borderValue=0.0)
_mask = mask.copy()
_mask[_mask > 0.05] = 1.
non_zero_points = cv2.findNonZero(_mask)
_, _, w, h = cv2.boundingRect(non_zero_points)
mask_size = int(np.sqrt(w * h))
if erode_amount > 0:
kernel_size = max(int(mask_size * erode_amount), 1)
structuring_element = cv2.getStructuringElement(cv2.MORPH_RECT, (kernel_size, kernel_size))
mask = cv2.erode(mask, structuring_element)
if blur_amount > 0:
kernel_size = max(int(mask_size * blur_amount), 3)
if kernel_size % 2 == 0:
kernel_size += 1
mask = cv2.GaussianBlur(mask, (kernel_size, kernel_size), 0)
mask = np.tile(np.expand_dims(mask, axis=-1), (1, 1, 3))
if blend_method == 'laplacian':
composite_image = laplacian_blending(foreground, background, mask.clip(0,1), num_levels=4)
else:
composite_image = mask * foreground + (1 - mask) * background
return composite_image.astype("uint8").clip(0, 255)
def image_mask_overlay(img, mask):
img = img.astype('float32') / 255.
img *= (mask + 0.25).clip(0, 1)
img = np.clip(img * 255., 0., 255.).astype('uint8')
return img
def resize_with_padding(img, expected_size=(640, 360), color=(0, 0, 0), max_flip=False):
original_height, original_width = img.shape[:2]
if max_flip and original_height > original_width:
expected_size = (expected_size[1], expected_size[0])
aspect_ratio = original_width / original_height
new_width = expected_size[0]
new_height = int(new_width / aspect_ratio)
if new_height > expected_size[1]:
new_height = expected_size[1]
new_width = int(new_height * aspect_ratio)
resized_img = cv2.resize(img, (new_width, new_height), interpolation=cv2.INTER_AREA)
canvas = cv2.copyMakeBorder(resized_img,
top=(expected_size[1] - new_height) // 2,
bottom=(expected_size[1] - new_height + 1) // 2,
left=(expected_size[0] - new_width) // 2,
right=(expected_size[0] - new_width + 1) // 2,
borderType=cv2.BORDER_CONSTANT, value=color)
return canvas
def create_image_grid(images, size=128):
num_images = len(images)
num_cols = int(np.ceil(np.sqrt(num_images)))
num_rows = int(np.ceil(num_images / num_cols))
grid = np.zeros((num_rows * size, num_cols * size, 3), dtype=np.uint8)
for i, image in enumerate(images):
row_idx = (i // num_cols) * size
col_idx = (i % num_cols) * size
image = cv2.resize(image.copy(), (size,size))
if image.dtype != np.uint8:
image = (image.astype('float32') * 255).astype('uint8')
if image.ndim == 2:
image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
grid[row_idx:row_idx + size, col_idx:col_idx + size] = image
return grid
def image_to_html(img, size=(640, 360), extension="jpg"):
if img is not None:
img = resize_with_padding(img, expected_size=size)
buffer = cv2.imencode(f".{extension}", img)[1]
base64_data = base64.b64encode(buffer.tobytes())
imgbs64 = f"data:image/{extension};base64," + base64_data.decode("utf-8")
html = '<div style="display: flex; justify-content: center; align-items: center; width: 100%;">'
html += f'<img src={imgbs64} alt="No Preview" style="max-width: 100%; max-height: 100%;">'
html += '</div>'
return html
return None
def mix_two_image(a, b, opacity=1.):
a_dtype = a.dtype
b_dtype = b.dtype
a = a.astype('float32')
b = b.astype('float32')
a = cv2.resize(a, (b.shape[0], b.shape[1]))
opacity = min(max(opacity, 0.), 1.)
mixed_img = opacity * b + (1 - opacity) * a
return mixed_img.astype(a_dtype)
resolution_map = {
"Original": None,
"240p": (426, 240),
"360p": (640, 360),
"480p": (854, 480),
"720p": (1280, 720),
"1080p": (1920, 1080),
"1440p": (2560, 1440),
"2160p": (3840, 2160),
}
def resize_image_by_resolution(img, quality):
resolution = resolution_map.get(quality, None)
if resolution is None:
return img
h, w = img.shape[:2]
if h > w:
ratio = resolution[0] / h
else:
ratio = resolution[0] / w
new_h, new_w = int(h * ratio), int(w * ratio)
img = cv2.resize(img, (new_w, new_h), interpolation=cv2.INTER_AREA)
return img
def fast_pil_encode(pil_image):
image_arr = np.asarray(pil_image)[:,:,::-1]
buffer = cv2.imencode('.jpg', image_arr)[1]
base64_data = base64.b64encode(buffer.tobytes())
return "data:image/jpg;base64," + base64_data.decode("utf-8")
def fast_numpy_encode(img_array):
buffer = cv2.imencode('.jpg', img_array)[1]
base64_data = base64.b64encode(buffer.tobytes())
return "data:image/jpg;base64," + base64_data.decode("utf-8")
crf_quality_by_resolution = {
240: {"poor": 45, "low": 35, "medium": 28, "high": 23, "best": 20},
360: {"poor": 35, "low": 28, "medium": 23, "high": 20, "best": 18},
480: {"poor": 28, "low": 23, "medium": 20, "high": 18, "best": 16},
720: {"poor": 23, "low": 20, "medium": 18, "high": 16, "best": 14},
1080: {"poor": 20, "low": 18, "medium": 16, "high": 14, "best": 12},
1440: {"poor": 18, "low": 16, "medium": 14, "high": 12, "best": 10},
2160: {"poor": 16, "low": 14, "medium": 12, "high": 10, "best": 8}
}
def get_crf_for_resolution(resolution, quality):
available_resolutions = list(crf_quality_by_resolution.keys())
closest_resolution = min(available_resolutions, key=lambda x: abs(x - resolution))
return crf_quality_by_resolution[closest_resolution][quality] |