Paulie-Aditya commited on
Commit
a4c562c
·
1 Parent(s): 002e0f5

normal chatbot, not trained on med info

Browse files
Files changed (1) hide show
  1. app.py +50 -35
app.py CHANGED
@@ -1,50 +1,65 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
- from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
4
- import torch
5
 
 
 
 
6
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
7
 
8
- class Assistant:
9
- def __init__(self):
10
- model_name = "ruslanmv/Medical-Llama3-8B"
11
- device_map = 'auto'
12
- # bnb_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4",bnb_4bit_compute_dtype=torch.float16,)
13
- # self.model = AutoModelForCausalLM.from_pretrained( model_name,quantization_config=bnb_config, trust_remote_code=True,use_cache=False,device_map=device_map)
14
- self.model = AutoModelForCausalLM.from_pretrained( model_name, trust_remote_code=True,use_cache=False,device_map=device_map)
15
-
16
- self.tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
17
- self.tokenizer.pad_token = self.tokenizer.eos_token
18
-
19
-
20
- def respond(
21
- self,
22
- message
 
 
 
 
 
 
 
 
 
 
 
 
23
  ):
24
- sys_message = '''
25
- You are an AI Medical Assistant trained on a vast dataset of health information. Please be thorough and
26
- provide an informative answer. If you don't know the answer to a specific medical inquiry, advise seeking professional help.
27
- '''
28
- messages = [{"role": "system", "content": sys_message}, {"role": "user", "content": message}]
29
-
30
- # Applying chat template
31
- prompt = self.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
32
- inputs = self.tokenizer(prompt, return_tensors="pt").to("cuda")
33
- outputs = self.model.generate(**inputs, max_new_tokens=100, use_cache=True)
34
-
35
- # Extract and return the generated text, removing the prompt
36
- response_text = self.tokenizer.batch_decode(outputs)[0].strip()
37
- answer = response_text.split('<|im_start|>assistant')[-1].strip()
38
- return answer
39
 
40
 
41
  """
42
  For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
43
  """
44
- assistant = Assistant()
45
-
46
  demo = gr.ChatInterface(
47
- assistant.respond
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
  )
49
 
50
 
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
 
 
3
 
4
+ """
5
+ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
+ """
7
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
9
+
10
+ def respond(
11
+ message,
12
+ history: list[tuple[str, str]],
13
+ system_message,
14
+ max_tokens,
15
+ temperature,
16
+ top_p,
17
+ ):
18
+ messages = [{"role": "system", "content": system_message}]
19
+
20
+ for val in history:
21
+ if val[0]:
22
+ messages.append({"role": "user", "content": val[0]})
23
+ if val[1]:
24
+ messages.append({"role": "assistant", "content": val[1]})
25
+
26
+ messages.append({"role": "user", "content": message})
27
+
28
+ response = ""
29
+
30
+ for message in client.chat_completion(
31
+ messages,
32
+ max_tokens=max_tokens,
33
+ stream=True,
34
+ temperature=temperature,
35
+ top_p=top_p,
36
  ):
37
+ token = message.choices[0].delta.content
38
+
39
+ response += token
40
+ yield response
 
 
 
 
 
 
 
 
 
 
 
41
 
42
 
43
  """
44
  For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
  """
 
 
46
  demo = gr.ChatInterface(
47
+ respond,
48
+ additional_inputs=[
49
+ gr.Textbox(value= '''
50
+ You are an AI Medical Assistant trained on a vast dataset of health information. Please be thorough and
51
+ provide an informative answer. If you don't know the answer to a specific medical inquiry, advise seeking professional help.
52
+ ''', label="System message"),
53
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
54
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
55
+ gr.Slider(
56
+ minimum=0.1,
57
+ maximum=1.0,
58
+ value=0.95,
59
+ step=0.05,
60
+ label="Top-p (nucleus sampling)",
61
+ ),
62
+ ],
63
  )
64
 
65