Spaces:
Running
Running
Paulie-Aditya
commited on
Commit
·
a4c562c
1
Parent(s):
002e0f5
normal chatbot, not trained on med info
Browse files
app.py
CHANGED
@@ -1,50 +1,65 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
4 |
-
import torch
|
5 |
|
|
|
|
|
|
|
6 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
):
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
messages = [{"role": "system", "content": sys_message}, {"role": "user", "content": message}]
|
29 |
-
|
30 |
-
# Applying chat template
|
31 |
-
prompt = self.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
32 |
-
inputs = self.tokenizer(prompt, return_tensors="pt").to("cuda")
|
33 |
-
outputs = self.model.generate(**inputs, max_new_tokens=100, use_cache=True)
|
34 |
-
|
35 |
-
# Extract and return the generated text, removing the prompt
|
36 |
-
response_text = self.tokenizer.batch_decode(outputs)[0].strip()
|
37 |
-
answer = response_text.split('<|im_start|>assistant')[-1].strip()
|
38 |
-
return answer
|
39 |
|
40 |
|
41 |
"""
|
42 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
43 |
"""
|
44 |
-
assistant = Assistant()
|
45 |
-
|
46 |
demo = gr.ChatInterface(
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
)
|
49 |
|
50 |
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
|
|
|
|
3 |
|
4 |
+
"""
|
5 |
+
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
+
"""
|
7 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
9 |
+
|
10 |
+
def respond(
|
11 |
+
message,
|
12 |
+
history: list[tuple[str, str]],
|
13 |
+
system_message,
|
14 |
+
max_tokens,
|
15 |
+
temperature,
|
16 |
+
top_p,
|
17 |
+
):
|
18 |
+
messages = [{"role": "system", "content": system_message}]
|
19 |
+
|
20 |
+
for val in history:
|
21 |
+
if val[0]:
|
22 |
+
messages.append({"role": "user", "content": val[0]})
|
23 |
+
if val[1]:
|
24 |
+
messages.append({"role": "assistant", "content": val[1]})
|
25 |
+
|
26 |
+
messages.append({"role": "user", "content": message})
|
27 |
+
|
28 |
+
response = ""
|
29 |
+
|
30 |
+
for message in client.chat_completion(
|
31 |
+
messages,
|
32 |
+
max_tokens=max_tokens,
|
33 |
+
stream=True,
|
34 |
+
temperature=temperature,
|
35 |
+
top_p=top_p,
|
36 |
):
|
37 |
+
token = message.choices[0].delta.content
|
38 |
+
|
39 |
+
response += token
|
40 |
+
yield response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
|
43 |
"""
|
44 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
"""
|
|
|
|
|
46 |
demo = gr.ChatInterface(
|
47 |
+
respond,
|
48 |
+
additional_inputs=[
|
49 |
+
gr.Textbox(value= '''
|
50 |
+
You are an AI Medical Assistant trained on a vast dataset of health information. Please be thorough and
|
51 |
+
provide an informative answer. If you don't know the answer to a specific medical inquiry, advise seeking professional help.
|
52 |
+
''', label="System message"),
|
53 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
54 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
55 |
+
gr.Slider(
|
56 |
+
minimum=0.1,
|
57 |
+
maximum=1.0,
|
58 |
+
value=0.95,
|
59 |
+
step=0.05,
|
60 |
+
label="Top-p (nucleus sampling)",
|
61 |
+
),
|
62 |
+
],
|
63 |
)
|
64 |
|
65 |
|