ParamTh's picture
Add application file
1d8564b
import streamlit as st
from PIL import Image
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
from qwen_vl_utils import process_vision_info
def load_model_and_processor():
model = Qwen2VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2-VL-2B-Instruct", torch_dtype="auto", device_map="auto"
)
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
return model, processor
st.title('Image OCR and RAG')
with st.sidebar:
st.header("Upload your image")
uploaded_file = st.file_uploader("Upload an image...", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
st.success("Image uploaded successfully!")
model, processor = load_model_and_processor()
if uploaded_file is not None:
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Image", use_column_width=True)
try:
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": image,
},
{"type": "text", "text": "Extract all the text present in the image and give the output in JSON format"},
],
}
]
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cpu")
# Generate output using the model
generated_ids = model.generate(**inputs, max_new_tokens=300)
generated_ids_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
# Display the extracted text in JSON format
st.subheader("Extracted Text in JSON Format:")
st.json(output_text[0])
except Exception as e:
st.error(f"An error occurred: {str(e)}")
else:
st.write("Please upload an image from the sidebar")