|
import gradio as gr |
|
from random import randint |
|
from all_models import models |
|
from datetime import datetime |
|
|
|
def get_current_time(): |
|
now = datetime.now() |
|
now2 = now |
|
current_time = now2.strftime("%Y-%m-%d %H:%M:%S") |
|
ki = f'{current_time}' |
|
return ki |
|
|
|
def load_fn(models): |
|
global models_load |
|
models_load = {} |
|
for model in models: |
|
if model not in models_load.keys(): |
|
try: |
|
m = gr.load(f'models/{model}') |
|
except Exception as error: |
|
m = gr.Interface(lambda txt: None, ['text'], ['image']) |
|
models_load.update({model: m}) |
|
|
|
load_fn(models) |
|
|
|
num_models = len(models) |
|
default_models = models[:num_models] |
|
|
|
def extend_choices(choices): |
|
return choices + (num_models - len(choices)) * ['NA'] |
|
|
|
def update_imgbox(choices): |
|
choices_plus = extend_choices(choices) |
|
return [gr.Image(None, label=m, visible=(m != 'NA'), elem_id="custom_image") for m in choices_plus] |
|
|
|
def gen_fn(model_str, prompt, negative_prompt, max_retries=10): |
|
if model_str == 'NA': |
|
return None |
|
|
|
retries = 0 |
|
while retries < max_retries: |
|
try: |
|
noise = str(randint(0, 9999999)) |
|
if hasattr(models_load[model_str], 'negative_prompt'): |
|
result = models_load[model_str](f'{prompt} {noise}', negative_prompt=negative_prompt) |
|
else: |
|
result = models_load[model_str](f'{prompt} {noise}') |
|
return result |
|
except Exception as e: |
|
|
|
if "CUDA out of memory" in str(e) or "500" in str(e): |
|
print(f"CUDA out of memory or server error: {e}") |
|
else: |
|
print(f"Error generating image: {e}") |
|
|
|
retries += 1 |
|
if retries >= max_retries: |
|
raise Exception(f"Failed to generate image after {max_retries} retries.") |
|
|
|
return None |
|
|
|
def img_to_img_fn(model_str, image, prompt, negative_prompt, max_retries=10): |
|
if model_str == 'NA' or image is None: |
|
return None |
|
|
|
retries = 0 |
|
while retries < max_retries: |
|
try: |
|
noise = str(randint(0, 9999999)) |
|
if hasattr(models_load[model_str], 'img2img'): |
|
|
|
result = models_load[model_str].img2img(image=image, prompt=f'{prompt} {noise}', negative_prompt=negative_prompt) |
|
elif hasattr(models_load[model_str], 'image_to_image'): |
|
|
|
result = models_load[model_str].image_to_image(image=image, prompt=f'{prompt} {noise}', negative_prompt=negative_prompt) |
|
elif hasattr(models_load[model_str], 'image2image'): |
|
|
|
result = models_load[model_str].image2image(image=image, prompt=f'{prompt} {noise}', negative_prompt=negative_prompt) |
|
else: |
|
|
|
result = models_load[model_str](image=image, prompt=f'{prompt} {noise}', negative_prompt=negative_prompt) |
|
return result |
|
except Exception as e: |
|
|
|
if "CUDA out of memory" in str(e) or "500" in str(e): |
|
print(f"CUDA out of memory or server error: {e}") |
|
else: |
|
print(f"Error generating image: {e}") |
|
|
|
retries += 1 |
|
if retries >= max_retries: |
|
raise Exception(f"Failed to generate image after {max_retries} retries.") |
|
|
|
return None |
|
|
|
def make_text_to_image(): |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
txt_input = gr.Textbox(label='Your prompt:', lines=3, container=False, elem_id="custom_textbox", placeholder="Prompt") |
|
negative_txt_input = gr.Textbox(label='Negative prompt:', lines=3, container=False, elem_id="custom_negative_textbox", placeholder="Negative Prompt") |
|
with gr.Row(): |
|
gen_button = gr.Button('Generate images', elem_id="custom_gen_button") |
|
stop_button = gr.Button('Stop', variant='secondary', interactive=False, elem_id="custom_stop_button") |
|
|
|
def on_generate_click(): |
|
return gr.Button('Generate images', elem_id="custom_gen_button"), gr.Button('Stop', variant='secondary', interactive=True, elem_id="custom_stop_button") |
|
|
|
def on_stop_click(): |
|
return gr.Button('Generate images', elem_id="custom_gen_button"), gr.Button('Stop', variant='secondary', interactive=False, elem_id="custom_stop_button") |
|
|
|
gen_button.click(on_generate_click, inputs=None, outputs=[gen_button, stop_button]) |
|
stop_button.click(on_stop_click, inputs=None, outputs=[gen_button, stop_button]) |
|
|
|
with gr.Row(): |
|
output = [gr.Image(label=m, min_width=250, height=250, elem_id="custom_image") for m in default_models] |
|
current_models = [gr.Textbox(m, visible=False) for m in default_models] |
|
for m, o in zip(current_models, output): |
|
gen_event = gen_button.click(gen_fn, [m, txt_input, negative_txt_input], o) |
|
stop_button.click(on_stop_click, inputs=None, outputs=[gen_button, stop_button], cancels=[gen_event]) |
|
|
|
with gr.Accordion('Model selection', elem_id="custom_accordion"): |
|
model_choice = gr.CheckboxGroup(models, label=f'{num_models} different models selected', value=default_models, interactive=True, elem_id="custom_checkbox_group") |
|
model_choice.change(update_imgbox, model_choice, output) |
|
model_choice.change(extend_choices, model_choice, current_models) |
|
|
|
def make_image_to_image(): |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
img_input = gr.Image(label='Input Image', type='pil') |
|
txt_input = gr.Textbox(label='Your prompt:', lines=3, container=False, elem_id="custom_textbox", placeholder="Prompt") |
|
negative_txt_input = gr.Textbox(label='Negative prompt:', lines=3, container=False, elem_id="custom_negative_textbox", placeholder="Negative Prompt") |
|
with gr.Row(): |
|
gen_button = gr.Button('Generate images', elem_id="custom_gen_button") |
|
stop_button = gr.Button('Stop', variant='secondary', interactive=False, elem_id="custom_stop_button") |
|
|
|
def on_generate_click(): |
|
return gr.Button('Generate images', elem_id="custom_gen_button"), gr.Button('Stop', variant='secondary', interactive=True, elem_id="custom_stop_button") |
|
|
|
def on_stop_click(): |
|
return gr.Button('Generate images', elem_id="custom_gen_button"), gr.Button('Stop', variant='secondary', interactive=False, elem_id="custom_stop_button") |
|
|
|
gen_button.click(on_generate_click, inputs=None, outputs=[gen_button, stop_button]) |
|
stop_button.click(on_stop_click, inputs=None, outputs=[gen_button, stop_button]) |
|
|
|
with gr.Row(): |
|
output = [gr.Image(label=m, min_width=250, height=250, elem_id="custom_image") for m in default_models] |
|
current_models = [gr.Textbox(m, visible=False) for m in default_models] |
|
for m, o in zip(current_models, output): |
|
gen_event = gen_button.click(img_to_img_fn, [m, img_input, txt_input, negative_txt_input], o) |
|
stop_button.click(on_stop_click, inputs=None, outputs=[gen_button, stop_button], cancels=[gen_event]) |
|
|
|
with gr.Accordion('Model selection', elem_id="custom_accordion"): |
|
model_choice = gr.CheckboxGroup(models, label=f'{num_models} different models selected', value=default_models, interactive=True, elem_id="custom_checkbox_group") |
|
model_choice.change(update_imgbox, model_choice, output) |
|
model_choice.change(extend_choices, model_choice, current_models) |
|
|
|
custom_css = """ |
|
/* Your existing CSS styles here */ |
|
:root { |
|
--body-background-fill: #2d3d4f; |
|
} |
|
body { |
|
background-color: var(--body-background-fill) !important; |
|
color: #2d3d4f; |
|
margin: 0; |
|
padding: 0; |
|
font-family: Arial, sans-serif; |
|
height: 100vh; |
|
overflow-y: auto; |
|
} |
|
.gradio-container { |
|
background-color: #2d3d4f; |
|
color: #c5c6c7; |
|
padding: 20px; |
|
border-radius: 8px; |
|
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2); |
|
width: 100%; |
|
max-width: 1200px; |
|
margin: 20px auto; |
|
display: block; |
|
min-height: 100vh; |
|
} |
|
.app_title { |
|
background-color: #2d3d4f; |
|
color: #c5c6c7; |
|
padding: 10px 20px; |
|
border-bottom: 1px solid #3b4252; |
|
text-align: center; |
|
font-size: 24px; |
|
font-weight: bold; |
|
width: 100%; |
|
box-sizing: border-box; |
|
margin-bottom: 20px; |
|
} |
|
.custom_textbox, .custom_negative_textbox { |
|
background-color: #2d343f; |
|
border: 1px solid #3b4252; |
|
color: #7f8184; |
|
padding: 10px; |
|
border-radius: 4px; |
|
margin-bottom: 10px; |
|
width: 100%; |
|
box-sizing: border-box; |
|
} |
|
.custom_gen_button { |
|
background-color: #8b38ff; |
|
border: 1px solid #ffffff; |
|
color: blue; |
|
padding: 15px 32px; |
|
text-align: center; |
|
text-decoration: none; |
|
display: inline-block; |
|
font-size: 16px; |
|
margin: 4px 2px; |
|
cursor: pointer; |
|
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2); |
|
transition: transform 0.2s, box-shadow 0.2s; |
|
border-radius: 4px; |
|
} |
|
.custom_gen_button:hover { |
|
transform: translateY(-2px); |
|
box-shadow: 0 6px 10px rgba(0, 0, 0, 0.3); |
|
} |
|
.custom_stop_button { |
|
background-color: #6200ea; |
|
border: 1px solid #ffffff; |
|
color: blue; |
|
padding: 15px 32px; |
|
text-align: center; |
|
text-decoration: none; |
|
display: inline-block; |
|
font-size: 16px; |
|
margin: 4px 2px; |
|
cursor: pointer; |
|
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2); |
|
transition: transform 0.2s, box-shadow 0.2s; |
|
border-radius: 4px; |
|
} |
|
.custom_stop_button:hover { |
|
transform: translateY(-2px); |
|
box-shadow: 0 6px 10px rgba(0, 0, 0, 0.3); |
|
} |
|
.custom_image { |
|
border: 1px solid #3b4252; |
|
background-color: #2d343f; |
|
border-radius: 4px; |
|
margin: 10px; |
|
max-width: 100%; |
|
box-sizing: border-box; |
|
} |
|
.custom_accordion { |
|
background-color: #2d3d4f; |
|
color: #7f8184; |
|
border: 1px solid #3b4252; |
|
border-radius: 4px; |
|
margin-top: 20px; |
|
width: 100%; |
|
box-sizing: border-box; |
|
transition: margin 0.2s ease; |
|
} |
|
.custom_accordion .gr-accordion-header { |
|
background-color: #2d3d4f; |
|
color: #7f8184; |
|
padding: 10px 20px; |
|
border-bottom: 1px solid #5b6270; |
|
cursor: pointer; |
|
font-size: 18px; |
|
font-weight: bold; |
|
height: 40px; |
|
display: flex; |
|
align-items: center; |
|
} |
|
.custom_accordion .gr-accordion-header:hover { |
|
background-color: #2d3d4f; |
|
} |
|
.custom_accordion .gr-accordion-content { |
|
padding: 10px 20px; |
|
background-color: #2d3d4f; |
|
border-top: 1px solid #5b6270; |
|
max-height: 0; |
|
overflow: hidden; |
|
transition: max-height 0.2s ease; |
|
} |
|
.custom_accordion .gr-accordion-content.open { |
|
max-height: 500px; |
|
} |
|
.custom_checkbox_group { |
|
background-color: #2d343f; |
|
border: 1px solid #3b4252; |
|
color: #7f8184; |
|
border-radius: 4px; |
|
padding: 10px; |
|
width: 100%; |
|
box-sizing: border-box; |
|
} |
|
@media (max-width: 768px) { |
|
.gradio-container { |
|
width: 100%; |
|
margin: 0; |
|
padding: 10px; |
|
} |
|
.custom_textbox, .custom_negative_textbox, .custom_image, .custom_checkbox_group { |
|
width: 100%; |
|
box-sizing: border-box; |
|
} |
|
} |
|
""" |
|
|
|
with gr.Blocks(css=custom_css) as demo: |
|
with gr.Tabs(): |
|
with gr.TabItem("Text-to-Image"): |
|
make_text_to_image() |
|
with gr.TabItem("Image-to-Image"): |
|
make_image_to_image() |
|
|
|
demo.queue(concurrency_count=500) |
|
demo.launch() |