File size: 3,082 Bytes
6fef025 f5b8400 6fef025 f5b8400 6fef025 f5b8400 6fef025 f5b8400 6fef025 f5b8400 6fef025 f5b8400 fc42fea 6fef025 f5b8400 1485f13 6fef025 f5b8400 6b70d61 8500a79 c7ed42a f5b8400 3977ac5 901af0d f98f58b f5b8400 dd93521 f5b8400 beea29c c679dfe dd93521 654d3d1 6ce4171 654d3d1 f5b8400 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
import gradio as gr
from random import randint
from all_models import models
def load_fn(models):
global models_load
models_load = {}
for model in models:
if model not in models_load.keys():
try:
m = gr.load(f'models/{model}')
except Exception as error:
m = gr.Interface(lambda txt: None, ['text'], ['image'])
models_load.update({model: m})
load_fn(models)
num_models = 6
default_models = models[:num_models]
def extend_choices(choices):
return choices + (num_models - len(choices)) * ['NA']
def update_imgbox(choices):
choices_plus = extend_choices(choices)
return [gr.Image(None, label = m, visible = (m != 'NA')) for m in choices_plus]
def gen_fn(model_str, prompt):
if model_str == 'NA':
return None
noise = str(.) #str(randint(0, 99999999999))
return models_load[model_str](f'{prompt} {noise}')
with gr.Blocks() as demo:
with gr.Tab('The Dream'):
txt_input = gr.Textbox(label = 'Your prompt:', lines=4).style(container=False,min_width=1200)
gen_button = gr.Button('Generate up to 6 images in up to 3 minutes total')
stop_button = gr.Button('Stop', variant = 'secondary', interactive = False)
gen_button.click(lambda s: gr.update(interactive = True), None, stop_button)
gr.HTML(
"""
<div style="text-align: center; max-width: 1200px; margin: 0 auto;">
<div>
<body>
<div class="center"><p style="margin-bottom: 10px; color: #000000;">Scroll down to see more images and select models.</p>
</div>
</body>
</div>
</div>
"""
)
with gr.Row():
output = [gr.Image(label = m, min_width=480) for m in default_models]
current_models = [gr.Textbox(m, visible = False) for m in default_models]
for m, o in zip(current_models, output):
gen_event = gen_button.click(gen_fn, [m, txt_input], o)
stop_button.click(lambda s: gr.update(interactive = False), None, stop_button, cancels = [gen_event])
with gr.Accordion('Model selection'):
model_choice = gr.CheckboxGroup(models, label = f'Choose up to {num_models} different models from the 600 available!', value = default_models, multiselect = True, max_choices = num_models, interactive = True, filterable = False)
model_choice.change(update_imgbox, model_choice, output)
model_choice.change(extend_choices, model_choice, current_models)
with gr.Row():
gr.HTML(
"""
<div class="footer">
<p> Based on the <a href="https://huggingface.co/spaces/derwahnsinn/TestGen">TestGen</a> Space by derwahnsinn, the <a href="https://huggingface.co/spaces/RdnUser77/SpacIO_v1">SpacIO</a> Space by RdnUser77 and Omnibus's Maximum Multiplier!
</p>
"""
)
demo.queue(concurrency_count = 200)
demo.launch() |