PANH's picture
Upload 15 files
ffca110 verified
raw
history blame
33.8 kB
from logging import warning
import torch
import torch.nn as nn
import numpy as np
from tqdm import tqdm
import spacy
from sklearn.metrics.pairwise import cosine_similarity
from nltk.tokenize import sent_tokenize
import json
class CTCScorer():
def __init__(self, model_type) -> None:
self.model_type = model_type
import nltk
nltk.download('stopwords')
from ctc_score import StyleTransferScorer, SummarizationScorer, DialogScorer
if model_type == 'D-cnndm':
self.scorer = SummarizationScorer(align='D-cnndm')
elif model_type =='E-roberta':
self.scorer = SummarizationScorer(align='E-roberta')
elif model_type == 'R-cnndm':
self.scorer = SummarizationScorer(align='R-cnndm')
def score(self, premise: list, hypo: list):
assert len(premise) == len(hypo), "Premise and hypothesis should have the same length"
output_scores = []
for one_pre, one_hypo in tqdm(zip(premise, hypo), total=len(premise), desc="Evaluating by ctc"):
score_for_this_example = self.scorer.score(doc=one_pre, refs=[], hypo=one_hypo, aspect='consistency')
if score_for_this_example is not None:
output_scores.append(score_for_this_example)
else:
output_scores.append(1e-8)
output = None, torch.tensor(output_scores), None
return output
class SimCSEScorer():
def __init__(self, model_type, device) -> None:
self.model_type = model_type
self.device = device
from transformers import AutoModel, AutoTokenizer
# refer to the model list on https://github.com/princeton-nlp/SimCSE for the list of models
self.tokenizer = AutoTokenizer.from_pretrained(model_type)
self.model = AutoModel.from_pretrained(model_type).to(self.device)
self.spacy = spacy.load('en_core_web_sm')
self.batch_size = 64
def score(self, premise: list, hypo: list):
assert len(premise) == len(hypo)
output_scores = []
premise_sents = []
premise_index = [0]
hypo_sents = []
hypo_index = [0]
for one_pre, one_hypo in tqdm(zip(premise, hypo), desc="Sentenizing", total=len(premise)):
premise_sent = sent_tokenize(one_pre) #[each.text for each in self.spacy(one_pre).sents]
hypo_sent = sent_tokenize(one_hypo) #[each.text for each in self.spacy(one_hypo).sents]
premise_sents.extend(premise_sent)
premise_index.append(len(premise_sents))
hypo_sents.extend(hypo_sent)
hypo_index.append(len(hypo_sents))
all_sents = premise_sents + hypo_sents
embeddings = []
with torch.no_grad():
for batch in tqdm(self.chunks(all_sents, self.batch_size), total=int(len(all_sents)/self.batch_size), desc="Evaluating by SimCSE"):
inputs = self.tokenizer(batch, padding=True, truncation=True, return_tensors="pt").to(self.device)
embeddings.append(self.model(**inputs, output_hidden_states=True, return_dict=True).pooler_output)
embeddings = torch.cat(embeddings)
assert len(premise_index) == len(hypo_index)
for i in range(len(premise_index)-1):
premise_embeddings = embeddings[premise_index[i]: premise_index[i+1]]
hypo_embeddings = embeddings[len(premise_sents)+hypo_index[i]:len(premise_sents)+hypo_index[i+1]]
cos_sim = cosine_similarity(premise_embeddings.cpu(), hypo_embeddings.cpu())
score_p = cos_sim.max(axis=0).mean()
score_r = cos_sim.max(axis=1).mean()
score_f = 2 * score_p * score_r / (score_p + score_r)
output_scores.append(score_f)
return torch.Tensor(output_scores), torch.Tensor(output_scores), None
def chunks(self, lst, n):
"""Yield successive n-sized chunks from lst."""
for i in range(0, len(lst), n):
yield lst[i:i + n]
class BleurtScorer():
def __init__(self, checkpoint) -> None:
self.checkpoint = checkpoint
from bleurt import score
# BLEURT-20 can also be switched to other checkpoints to improve time
# No avaliable api to specify cuda number
self.model = score.BleurtScorer(self.checkpoint)
def scorer(self, premise:list, hypo: list):
assert len(premise) == len(hypo)
output_scores = self.model.score(references=premise, candidates=hypo, batch_size=8)
output_scores = [s for s in output_scores]
return torch.Tensor(output_scores), torch.Tensor(output_scores), torch.Tensor(output_scores)
class BertScoreScorer():
def __init__(self, model_type, metric, device, batch_size) -> None:
self.model_type = model_type
self.device = device
self.metric = metric
self.batch_size = batch_size
from bert_score import score
self.model = score
def scorer(self, premise: list, hypo: list):
assert len(premise) == len(hypo)
precision, recall, f1 = self.model(premise, hypo, model_type=self.model_type, lang='en', rescale_with_baseline=True, verbose=True, device=self.device, batch_size=self.batch_size)
f1 = [f for f in f1]
precision = [p for p in precision]
recall = [r for r in recall]
if self.metric == 'f1':
return torch.Tensor(f1), torch.Tensor(f1), None
elif self.metric == 'precision':
return torch.Tensor(precision), torch.Tensor(precision), None
elif self.metric == 'recall':
return torch.Tensor(recall), torch.Tensor(recall), None
else:
ValueError("metric type not in f1, precision or recall.")
class BartScoreScorer():
def __init__(self, checkpoint, device) -> None:
self.checkpoint = checkpoint
self.device = device
import os, sys
sys.path.append('baselines/BARTScore')
from bart_score import BARTScorer
self.model = BARTScorer(device=self.device, checkpoint=self.checkpoint)
def scorer(self, premise: list, hypo: list):
assert len(premise) == len(hypo)
output_scores = self.model.score(premise, hypo, batch_size=4)
normed_score = torch.exp(torch.Tensor(output_scores))
return normed_score, normed_score, normed_score
### Below are baselines in SummaC
### MNLI, NER, FactCC, DAE, FEQA, QuestEval, SummaC-ZS, SummaC-Conv
class MNLIScorer():
def __init__(self, model="roberta-large-mnli", device='cuda:0', batch_size=32) -> None:
from transformers import AutoTokenizer, AutoModelForSequenceClassification
self.tokenizer = AutoTokenizer.from_pretrained(model)
self.model = AutoModelForSequenceClassification.from_pretrained(model).to(device)
self.device = device
self.softmax = nn.Softmax(dim=-1)
self.batch_size = batch_size
def scorer(self, premise: list, hypo: list):
if isinstance(premise, str) and isinstance(hypo, str):
premise = [premise]
hypo = [hypo]
batch = self.batch_tokenize(premise, hypo)
output_score_tri = []
for mini_batch in tqdm(batch, desc="Evaluating MNLI"):
# for mini_batch in batch:
mini_batch = mini_batch.to(self.device)
with torch.no_grad():
model_output = self.model(**mini_batch)
model_output_tri = model_output.logits
model_output_tri = self.softmax(model_output_tri).cpu()
output_score_tri.append(model_output_tri[:,2])
output_score_tri = torch.cat(output_score_tri)
return output_score_tri, output_score_tri, output_score_tri
def batch_tokenize(self, premise, hypo):
"""
input premise and hypos are lists
"""
assert isinstance(premise, list) and isinstance(hypo, list)
assert len(premise) == len(hypo), "premise and hypo should be in the same length."
batch = []
for mini_batch_pre, mini_batch_hypo in zip(self.chunks(premise, self.batch_size), self.chunks(hypo, self.batch_size)):
try:
mini_batch = self.tokenizer(mini_batch_pre, mini_batch_hypo, truncation='only_first', padding='max_length', max_length=self.tokenizer.model_max_length, return_tensors='pt')
except:
warning('text_b too long...')
mini_batch = self.tokenizer(mini_batch_pre, mini_batch_hypo, truncation=True, padding='max_length', max_length=self.tokenizer.model_max_length, return_tensors='pt')
batch.append(mini_batch)
return batch
def chunks(self, lst, n):
"""Yield successive n-sized chunks from lst."""
for i in range(0, len(lst), n):
yield lst[i:i + n]
class NERScorer():
def __init__(self) -> None:
import os, sys
sys.path.append('baselines/summac/summac')
from model_guardrails import NERInaccuracyPenalty
self.ner = NERInaccuracyPenalty()
def scorer(self, premise, hypo):
score_return = self.ner.score(premise, hypo)['scores']
oppo_score = [float(not each) for each in score_return]
tensor_score = torch.tensor(oppo_score)
return tensor_score, tensor_score, tensor_score
class UniEvalScorer():
def __init__(self, task='fact', device='cuda:0') -> None:
import os, sys
sys.path.append('baselines/UniEval')
from metric.evaluator import get_evaluator
self.evaluator = get_evaluator(task, device=device)
def scorer(self, premise, hypo):
from utils import convert_to_json
# Prepare data for pre-trained evaluators
data = convert_to_json(output_list=hypo, src_list=premise)
# Initialize evaluator for a specific task
# Get factual consistency scores
eval_scores = self.evaluator.evaluate(data, print_result=True)
score_list = [each['consistency'] for each in eval_scores]
return torch.tensor(score_list), torch.tensor(score_list), torch.tensor(score_list)
class FEQAScorer():
def __init__(self) -> None:
import os, sys
sys.path.append('baselines/feqa')
import benepar
import nltk
benepar.download('benepar_en3')
nltk.download('stopwords')
from feqa import FEQA
self.feqa_model = FEQA(squad_dir=os.path.abspath('baselines/feqa/qa_models/squad1.0'), bart_qa_dir=os.path.abspath('baselines/feqa/bart_qg/checkpoints/'), use_gpu=True)
def scorer(self, premise, hypo):
eval_score = self.feqa_model.compute_score(premise, hypo, aggregate=False)
return torch.tensor(eval_score), torch.tensor(eval_score), torch.tensor(eval_score)
class QuestEvalScorer():
def __init__(self) -> None:
import os, sys
sys.path.append('baselines/QuestEval')
from questeval.questeval_metric import QuestEval
self.questeval = QuestEval(no_cuda=False)
def scorer(self, premise, hypo):
score = self.questeval.corpus_questeval(
hypothesis=hypo,
sources=premise
)
final_score = score['ex_level_scores']
return torch.tensor(final_score), torch.tensor(final_score), torch.tensor(final_score)
class QAFactEvalScorer():
def __init__(self, model_folder, device='cuda:0') -> None:
import os, sys
sys.path.append('baselines/QAFactEval')
sys.path.append(os.path.abspath('baselines/qaeval/'))
from qafacteval import QAFactEval
kwargs = {"cuda_device": int(device.split(':')[-1]), "use_lerc_quip": True, \
"verbose": True, "generation_batch_size": 32, \
"answering_batch_size": 32, "lerc_batch_size": 8}
self.metric = QAFactEval(
lerc_quip_path=f"{model_folder}/quip-512-mocha",
generation_model_path=f"{model_folder}/generation/model.tar.gz",
answering_model_dir=f"{model_folder}/answering",
lerc_model_path=f"{model_folder}/lerc/model.tar.gz",
lerc_pretrained_model_path=f"{model_folder}/lerc/pretraining.tar.gz",
**kwargs
)
def scorer(self, premise, hypo):
results = self.metric.score_batch_qafacteval(premise, [[each] for each in hypo], return_qa_pairs=True)
score = [result[0]['qa-eval']['lerc_quip'] for result in results]
return torch.tensor(score), torch.tensor(score), torch.tensor(score)
class MoverScorer():
def __init__(self) -> None:
pass
class BERTScoreFFCIScorer():
def __init__(self) -> None:
pass
class DAEScorer():
def __init__(self, model_dir, device=0) -> None:
import os, sys
sys.path.insert(0, "baselines/factuality-datasets/")
from evaluate_generated_outputs import daefact
self.dae = daefact(model_dir, model_type='electra_dae', gpu_device=device)
def scorer(self, premise, hypo):
return_score = torch.tensor(self.dae.score_multi_doc(premise, hypo))
return return_score, return_score, return_score
class SummaCScorer():
def __init__(self, summac_type='conv', device='cuda:0') -> None:
self.summac_type = summac_type
import os, sys
sys.path.append("baselines/summac")
from summac.model_summac import SummaCZS, SummaCConv
if summac_type == 'conv':
self.model = SummaCConv(models=["vitc"], bins='percentile', granularity="sentence", nli_labels="e", device=device, start_file="default", agg="mean")
elif summac_type == 'zs':
self.model = SummaCZS(granularity="sentence", model_name="vitc", device=device) # If you have a GPU: switch to: device="cuda"
def scorer(self, premise, hypo):
assert len(premise) == len(hypo)
scores = self.model.score(premise, hypo)['scores']
return_score = torch.tensor(scores)
return return_score, return_score, return_score
class FactCCScorer():
def __init__(self, script_path, test_data_path,result_path) -> None:
self.script_path = script_path
self.result_path = result_path
self.test_data_path = test_data_path
def scorer(self, premise, hypo):
import subprocess
import pickle
self.generate_json_file(premise, hypo)
subprocess.call(f"sh {self.script_path}", shell=True)
print("Finishing FactCC")
results = pickle.load(open(self.result_path, 'rb'))
results = [-each+1 for each in results]
return torch.tensor(results), torch.tensor(results), torch.tensor(results)
def generate_json_file(self, premise, hypo):
output = []
assert len(premise) == len(hypo)
i = 0
for one_premise, one_hypo in zip(premise, hypo):
example = dict()
example['id'] = i
example['text'] = one_premise
example['claim'] = one_hypo
example['label'] = 'CORRECT'
i += 1
output.append(example)
with open(self.test_data_path, 'w', encoding='utf8') as f:
for each in output:
json.dump(each, f, ensure_ascii=False)
f.write('\n')
class BLANCScorer():
def __init__(self, device='cuda', batch_size=64) -> None:
from blanc import BlancHelp, BlancTune
self.blanc_help = BlancHelp(device=device, inference_batch_size=batch_size)
def scorer(self, premise, hypo):
score = self.blanc_help.eval_pairs(premise, hypo)
return_score = torch.tensor(score)
return return_score, return_score, return_score
class BLEUScorer():
def __init__(self, n_grams=1) -> None:
self.n_grams = n_grams
self.n_gram_map = {
1: (1,0,0,0),
2: (0.5,0.5,0,0),
3: (1./3,1./3,1./3,0),
4: (0.25,0.25,0.25,0.25)
}
def scorer(self, premise, hypo):
from nltk.translate.bleu_score import sentence_bleu
assert len(premise) == len(hypo), "premise and hypothesis should be the same length!"
output_score = []
for one_pre, one_hypo in tqdm(zip(premise, hypo), desc=f"Evaluating BLEU-{self.n_grams}", total=len(premise)):
scores = []
pre_sents = sent_tokenize(one_pre)
references = [[each for each in sent.split()] for sent in pre_sents]
for hypo_sent in sent_tokenize(one_hypo):
hypothesis = [each for each in hypo_sent.split()]
scores.append(sentence_bleu(references=references, hypothesis=hypothesis, weights=self.n_gram_map[self.n_grams]))
output_score.append(sum(scores)/len(scores) if len(scores)>0 else 0.)
return torch.tensor(output_score), torch.tensor(output_score), torch.tensor(output_score)
class ROUGEScorer():
def __init__(self, rouge_type='1') -> None:
from rouge import Rouge
self.rouge = Rouge()
self.rouge_type = rouge_type
def scorer(self, premise, hypo):
assert len(premise) == len(hypo), "premise and hypothesis should be the same length!"
output_score = []
for one_pre, one_hypo in tqdm(zip(premise, hypo), desc=f"Evaluating ROUGE-{self.rouge_type}", total=len(premise)):
scores = []
for pre_sent in sent_tokenize(one_pre):
for hypo_sent in sent_tokenize(one_hypo):
try:
scores.append(self.rouge.get_scores(pre_sent, hypo_sent)[0][f"rouge-{self.rouge_type}"]['f'])
except:
if len(pre_sent.strip()) == 0:
print('premise sent is empty')
elif len(hypo_sent.strip()) == 0:
print('hypo sent is empty')
scores.append(0.0)
scores = np.array(scores)
scores = scores.reshape((len(sent_tokenize(one_pre)), len(sent_tokenize(one_hypo))))
scores = scores.max(axis=0).mean()
output_score.append(scores.item())
return torch.tensor(output_score), torch.tensor(output_score), torch.tensor(output_score)
class GPTScoreScorer():
def __init__(self, api_key, gpt_model='davinci003') -> None:
import os, sys
sys.path.append('../BaselineForNLGEval/GPTScore')
from gpt3_score import gpt3score
self.gpt3score = gpt3score
self.api_key = api_key
self.gpt_model = gpt_model
self.consistency_prefix = "Generate factually consistent summary for the following text: "
self.consistency_suffix = " \n\nTl;dr "
def scorer(self, premise: list, hypothesis: list):
assert len(premise) == len(hypothesis)
output_score = []
for p, h in tqdm(zip(premise, hypothesis), total=len(premise), desc="Evaluating GPTScore"):
score = self.gpt3score(input=self.consistency_prefix + p + self.consistency_suffix, output=h, gpt3model=self.gpt_model, api_key=self.api_key)
output_score.append(score)
output_score = torch.tensor(output_score)
return None, output_score, None
class ChatGPTLuo2023Scorer():
def __init__(self, task, api_key, chat_model='gpt-3.5-turbo') -> None:
openai.api_key = api_key
assert isinstance(task, list) and len(task) == 1
self.task = task[0]
self.chat_model = chat_model
self.instruct = """Score the following summary given the corresponding article with respect to consistency from 1 to 10. Note that consistency measures how much information included in the summary is present in the source article. 10 points indicate the summary contains only statements that are entailed by the source document."""
def scorer(self, premise: list, hypothesis: list):
import time
assert len(premise) == len(hypothesis)
output_score = []
i = -1
for p, h in tqdm(zip(premise, hypothesis), total=len(premise), desc="Evaluating ChatGPTLuo2023"):
i += 1
if i <= -1: continue
attempt = 0
max_attempt = 5
while attempt < max_attempt:
try:
response = openai.ChatCompletion.create(
model=self.chat_model,
messages=[
# {"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": f"""Score the following summary given the corresponding article with respect to consistency from 1 to 10. Note that consistency measures how much information included in the summary is present in the source article. 10 points indicate the summary contains only statements that are entailed by the source document.
Summary: {h}
Article: {p} """},
],
temperature=0,
max_tokens=10
)
res_content = response['choices'][0]['message']['content']
break
except:
attempt += 1
print("openai api failed")
if max_attempt == attempt:
print("maximum failed attempts reached. exiting...")
exit()
json.dump({i: res_content}, open(f'exp_results/nlg_eval_fact/baselines/ChatGPTLuo2023-output/{self.task}.json', 'a'))
with open(f'exp_results/nlg_eval_fact/baselines/ChatGPTLuo2023-output/{self.task}.json', 'a') as f:
f.write('\n')
try:
score = int(res_content)
except:
print("unknown score")
score = 0.0
output_score.append(score)
# time.sleep(1)
output_score = torch.tensor(output_score)
return None, output_score, None
class ChatGPTGao2023Scorer():
def __init__(self, task, api_key, chat_model='gpt-3.5-turbo') -> None:
openai.api_key = api_key
assert isinstance(task, list) and len(task) == 1
self.task = task[0]
self.chat_model = chat_model
def scorer(self, premise: list, hypothesis: list):
import time
assert len(premise) == len(hypothesis)
output_score = []
i = -1
for p, h in tqdm(zip(premise, hypothesis), total=len(premise), desc="Evaluating ChatGPTGao2023"):
i += 1
if i <= -1: continue
attempt = 0
max_attempt = 5
while attempt < max_attempt:
try:
response = openai.ChatCompletion.create(
model=self.chat_model,
messages=[
# {"role": "system", "content": "You are a human annotator that rates the quality of summaries"},
# {"role": "user", "content": f"""Imagine you are a human annotator now. You will evaluate the quality of summaries written for a news article. Please follow these steps:\n\n 1. Carefully read the news article, and be aware of the information it contains.\n 2. Read the proposed summary.\n 3. Rate the summary on four dimensions: relevance, consistency, fluency, and coherence. You should rate on a scale from 1 (worst) to 5 (best).\n\n Definitions are as follows:\n Relevance: The rating measures how well the summary captures the key points of the article. Consider whether all and only the important aspects are contained in the summary.\n Consistency: The rating measures whether the facts in the summary are consistent with the facts in the original article. Consider whether the summary does reproduce all facts accurately and does not make up untrue information.\n Fluency: This rating measures the quality of individual sentences, whether they are well-written and grammatically correct. Consider the quality of individual sentences.\n Coherence: The rating measures the quality of all sentences collectively, to fit together and sound natural. Consider the quality of the summary as a whole.\n\n The article and the summary are given below:\n Article: {p}\n Summary: {h}"""},
{"role": "user", "content": f"""Evaluate the quality of summaries written for a news article. Rate each summary on four dimensions: relevance, faithfulness, fluency, and coherence. You should rate on a scale from 1 (worst) to 5 (best).\n\n Article: {p}\n Summary: {h}"""},
],
temperature=0,
# max_tokens=10
)
res_content = response['choices'][0]['message']['content']
break
except:
attempt += 1
print("openai api failed")
if max_attempt == attempt:
print("maximum failed attempts reached. exiting...")
exit()
json.dump({i: res_content}, open(f'exp_results/nlg_eval_fact/baselines/ChatGPTGao2023-output/{self.task}.json', 'a'))
with open(f'exp_results/nlg_eval_fact/baselines/ChatGPTGao2023-output/{self.task}.json', 'a') as f:
f.write('\n')
try:
score = int(res_content)
except:
print("unknown score")
score = 0.0
output_score.append(score)
# time.sleep(1)
output_score = torch.tensor(output_score)
return None, output_score, None
class ChatGPTYiChen2023Scorer():
def __init__(self, task, api_key, chat_model='gpt-3.5-turbo') -> None:
### Explicit score by ChatGPT
openai.api_key = api_key
assert isinstance(task, list) and len(task) == 1
self.task = task[0]
self.chat_model = chat_model
def scorer(self, premise: list, hypothesis: list):
import time
assert len(premise) == len(hypothesis)
output_score = []
i = -1
for p, h in tqdm(zip(premise, hypothesis), total=len(premise), desc="Evaluating ChatGPTYiChen2023"):
i += 1
if i <= -1: continue
attempt = 0
max_attempt = 5
while attempt < max_attempt:
try:
response = openai.ChatCompletion.create(
model=self.chat_model,
messages=[
# {"role": "system", "content": "You are a human annotator that rates the quality of summaries"},
# {"role": "user", "content": f"""Imagine you are a human annotator now. You will evaluate the quality of summaries written for a news article. Please follow these steps:\n\n 1. Carefully read the news article, and be aware of the information it contains.\n 2. Read the proposed summary.\n 3. Rate the summary on four dimensions: relevance, consistency, fluency, and coherence. You should rate on a scale from 1 (worst) to 5 (best).\n\n Definitions are as follows:\n Relevance: The rating measures how well the summary captures the key points of the article. Consider whether all and only the important aspects are contained in the summary.\n Consistency: The rating measures whether the facts in the summary are consistent with the facts in the original article. Consider whether the summary does reproduce all facts accurately and does not make up untrue information.\n Fluency: This rating measures the quality of individual sentences, whether they are well-written and grammatically correct. Consider the quality of individual sentences.\n Coherence: The rating measures the quality of all sentences collectively, to fit together and sound natural. Consider the quality of the summary as a whole.\n\n The article and the summary are given below:\n Article: {p}\n Summary: {h}"""},
{"role": "user", "content": f"""Score the following storyline given the beginning of the story on a continual scale from 0 (worst) to 100 (best), where score of 0 means "The storyline makes no sense and is totally not understandable" and score of 100 means "The storyline is perfect-written and highly consistent with the given beginning of the story". \n\n The beginning of the story: {p} \n\n Storyline: {h} \n\n Score: """},
],
temperature=0,
# max_tokens=10
)
res_content = response['choices'][0]['message']['content']
break
except:
attempt += 1
print("openai api failed")
if max_attempt == attempt:
print("maximum failed attempts reached. exiting...")
exit()
json.dump({i: res_content}, open(f'exp_results/nlg_eval_fact/baselines/ChatGPTYiChen2023-output/{self.task}.json', 'a'))
with open(f'exp_results/nlg_eval_fact/baselines/ChatGPTYiChen2023-output/{self.task}.json', 'a') as f:
f.write('\n')
try:
score = int(res_content)
except:
print("unknown score")
score = 0.0
output_score.append(score)
# time.sleep(1)
output_score = torch.tensor(output_score)
return None, output_score, None
class ChatGPTShiqiChen2023Scorer():
def __init__(self, task, api_key, chat_model='gpt-3.5-turbo') -> None:
### Explicit score by ChatGPT
openai.api_key = api_key
assert isinstance(task, list) and len(task) == 1
self.task = task[0]
self.chat_model = chat_model
def scorer(self, premise: list, hypothesis: list):
import time
assert len(premise) == len(hypothesis)
output_score = []
i = -1
for p, h in tqdm(zip(premise, hypothesis), total=len(premise), desc="Evaluating ChatGPTShiqiChen2023"):
i += 1
if i <= -1: continue
hypo_sents = sent_tokenize(h)
hypo_sents = ' \n '.join([f"{i+1}. "+each for i, each in enumerate(hypo_sents)])
attempt = 0
max_attempt = 5
while attempt < max_attempt:
try:
response = openai.ChatCompletion.create(
model=self.chat_model,
messages=[
# {"role": "system", "content": "You are a human annotator that rates the quality of summaries"},
# {"role": "user", "content": f"""Imagine you are a human annotator now. You will evaluate the quality of summaries written for a news article. Please follow these steps:\n\n 1. Carefully read the news article, and be aware of the information it contains.\n 2. Read the proposed summary.\n 3. Rate the summary on four dimensions: relevance, consistency, fluency, and coherence. You should rate on a scale from 1 (worst) to 5 (best).\n\n Definitions are as follows:\n Relevance: The rating measures how well the summary captures the key points of the article. Consider whether all and only the important aspects are contained in the summary.\n Consistency: The rating measures whether the facts in the summary are consistent with the facts in the original article. Consider whether the summary does reproduce all facts accurately and does not make up untrue information.\n Fluency: This rating measures the quality of individual sentences, whether they are well-written and grammatically correct. Consider the quality of individual sentences.\n Coherence: The rating measures the quality of all sentences collectively, to fit together and sound natural. Consider the quality of the summary as a whole.\n\n The article and the summary are given below:\n Article: {p}\n Summary: {h}"""},
{"role": "user", "content": f"""Source Document: \n {p} \n\n Q: Can the following statement be inferred from the above document? Yes or No?\n {hypo_sents} \n A: 1. """},
],
temperature=0,
# max_tokens=10
)
res_content = response['choices'][0]['message']['content']
break
except:
attempt += 1
print("openai api failed")
if max_attempt == attempt:
print("maximum failed attempts reached. exiting...")
exit()
json.dump({i: res_content}, open(f'exp_results/nlg_eval_fact/baselines/ChatGPTShiqiChen2023-output/{self.task}.json', 'a'))
with open(f'exp_results/nlg_eval_fact/baselines/ChatGPTShiqiChen2023-output/{self.task}.json', 'a') as f:
f.write('\n')
try:
score = int(res_content)
except:
print("unknown score")
score = 0.0
output_score.append(score)
# time.sleep(1)
output_score = torch.tensor(output_score)
return None, output_score, None