File size: 6,087 Bytes
f949b3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import torch
import torch.nn as nn
from typing import Union
from torch.nn.common_types import _size_2_t


class Conv2D_SubChannels(nn.Conv2d):
    def __init__(self,
                 in_channels: int,
                 out_channels: int,
                 kernel_size: _size_2_t,
                 stride: _size_2_t = 1,
                 padding: Union[str, _size_2_t] = 0,
                 dilation: _size_2_t = 1,
                 groups: int = 1,
                 bias: bool = True,
                 padding_mode: str = 'zeros',
                 device=None,
                 dtype=None,
                 ) -> None:
        super().__init__(in_channels, out_channels, kernel_size, stride,
                         padding, dilation, groups, bias, padding_mode, device, dtype)

    def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):

        if prefix+"weight" in state_dict and ((state_dict[prefix+"weight"].shape[0] > self.out_channels) or (state_dict[prefix+"weight"].shape[1] > self.in_channels)):
            print(
                f"Model checkpoint has too many channels. Excluding channels of convolution {prefix}.")
            if self.bias is not None:
                bias = state_dict[prefix+"bias"][:self.out_channels]
                state_dict[prefix+"bias"] = bias
                del bias

            weight = state_dict[prefix+"weight"]
            state_dict[prefix+"weight"] = weight[:self.out_channels,
                                                 :self.in_channels]
            del weight

        return super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)


class Conv2D_ExtendedChannels(nn.Conv2d):

    def __init__(self,
                 in_channels: int,
                 out_channels: int,
                 kernel_size: _size_2_t,
                 stride: _size_2_t = 1,
                 padding: Union[str, _size_2_t] = 0,
                 dilation: _size_2_t = 1,
                 groups: int = 1,
                 bias: bool = True,
                 padding_mode: str = 'zeros',
                 device=None,
                 dtype=None,
                 in_channel_extension: int = 0,
                 out_channel_extension: int = 0,
                 ) -> None:
        super().__init__(in_channels+in_channel_extension, out_channels+out_channel_extension, kernel_size, stride,
                         padding, dilation, groups, bias, padding_mode, device, dtype)

    def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
        print(f"Call extend channel loader with {prefix}")
        if prefix+"weight" in state_dict and (state_dict[prefix+"weight"].shape[0] < self.out_channels or state_dict[prefix+"weight"].shape[1] < self.in_channels):
            print(
                f"Model checkpoint has insufficient channels. Extending channels of convolution {prefix} by adding zeros.")
            if self.bias is not None:
                bias = state_dict[prefix+"bias"]
                state_dict[prefix+"bias"] = torch.cat(
                    [bias, torch.zeros(self.out_channels-len(bias), dtype=bias.dtype, layout=bias.layout, device=bias.device)])
                del bias

            weight = state_dict[prefix+"weight"]
            extended_weight = torch.zeros(self.out_channels, self.in_channels,
                                          weight.shape[2], weight.shape[3], device=weight.device, dtype=weight.dtype, layout=weight.layout)
            extended_weight[:weight.shape[0], :weight.shape[1]] = weight
            state_dict[prefix+"weight"] = extended_weight
            del extended_weight
            del weight

        return super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)


if __name__ == "__main__":
    class MyModel(nn.Module):

        def __init__(self, conv_type: str, c_in, c_out, in_extension, out_extension) -> None:
            super().__init__()

            if not conv_type == "normal":

                self.conv1 = Conv2D_ExtendedChannels(
                    c_in, c_out, 3, padding=1, in_channel_extension=in_extension, out_channel_extension=out_extension, bias=True)

            else:
                self.conv1 = nn.Conv2d(c_in, c_out, 3, padding=1, bias=True)

        def forward(self, x):
            return self.conv1(x)

    c_in = 9
    c_out = 12
    c_in_ext = 0
    c_out_ext = 3
    model = MyModel("normal", c_in, c_out, c_in_ext, c_out_ext)

    input = torch.randn((4, c_in+c_in_ext, 128, 128))
    out_normal = model(input[:, :c_in])
    torch.save(model.state_dict(), "model_dummy.py")

    model_2 = MyModel("special", c_in, c_out, c_in_ext, c_out_ext)
    model_2.load_state_dict(torch.load("model_dummy.py"))
    out_model_2 = model_2(input)
    out_special = out_model_2[:, :c_out]

    out_new = out_model_2[:, c_out:]
    model_3 = MyModel("special", c_in, c_out, c_in_ext, c_out_ext)
    model_3.load_state_dict(model_2.state_dict())
    # out_model_2 = model_2(input)
    # out_special = out_model_2[:, :c_out]

    print(
        f"Difference: Forward pass with extended convolution minus initial convolution: {(out_normal-out_special).abs().max()}")

    print(f"Compared tensors with shape: ",
          out_normal.shape, out_special.shape)

    if model_3.conv1.bias is not None:
        criterion = nn.MSELoss()

        before_opt = model_3.conv1.bias.detach().clone()
        target = torch.ones_like(out_model_2)
        optimizer = torch.optim.SGD(
            model_3.parameters(), lr=0.01, momentum=0.9)
        for iter in range(10):
            optimizer.zero_grad()
            out = model_3(input)
            loss = criterion(out, target)
            loss.backward()
            optimizer.step()
        print(
            f"Weights before and after are the same? {before_opt[c_out:].detach()} | {model_3.conv1.bias[c_out:].detach()} ")
        print(model_3.conv1.bias, model_2.conv1.bias)