Spaces:
Runtime error
Runtime error
File size: 11,157 Bytes
3e81358 ffd41e9 3e81358 ffd41e9 3e81358 ffd41e9 3e81358 ffd41e9 3e81358 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
import os
import spaces
import time
try:
token =os.environ['HF_TOKEN']
except:
print("paste your hf token here!")
token = "hf_xxxxxxxxxxxxxxxxxxx"
os.environ['HF_TOKEN'] = token
import torch
import gradio as gr
from gradio.themes.utils import colors, fonts, sizes
from faster_whisper import WhisperModel
from moviepy.editor import VideoFileClip
from transformers import AutoTokenizer, AutoModel
# ========================================
# Model Initialization
# ========================================
if gr.NO_RELOAD:
if torch.cuda.is_available():
speech_model = WhisperModel("large-v3", device="cuda", compute_type="float16")
else:
speech_model = WhisperModel("large-v3", device="cpu")
model_path = 'OpenGVLab/VideoChat-Flash-Qwen2-7B_res448'
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = AutoModel.from_pretrained(model_path, trust_remote_code=True).half().cuda()
model.config.mm_llm_compress = False
# ========================================
# Define Utils
# ========================================
def extract_audio(name):
with VideoFileClip(name) as video:
if video.audio == None:
return None
audio = video.audio
audio_name = name[:-4] + '.wav'
audio.write_audiofile(audio_name, fps=16000)
return audio_name
@spaces.GPU
def audio2text(audio):
segments, _ = speech_model.transcribe(audio)
text = ""
for segment in segments:
# print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))
text += ("[%.2fs -> %.2fs] %s " % (segment.start, segment.end, segment.text))
# print(text)
return text
# ========================================
# Gradio Setting
# ========================================
def gradio_reset():
return None, gr.update(value=None, interactive=True), gr.update(placeholder='Please upload your video first', interactive=False), gr.update(interactive=False) , gr.update(interactive=False), gr.update(value="Upload & Start Chat", interactive=True), [], ""
def upload_video(gr_video, text_input="Type and press Enter"):
if gr_video is None:
return gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=True), gr.update(interactive=False), gr.update(value="Upload & Start Chat", interactive=True), ""
# if check_asr: #表示需要提取音频
audio_name = extract_audio(gr_video)
if audio_name != None:
asr_msg = audio2text(audio_name)
else:
asr_msg = ""
# else:
# asr_msg = ""
return gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True, placeholder=text_input), gr.update(value="Start Chatting", interactive=False), asr_msg
def clear_():
return [], []
def gradio_ask(user_message, chatbot):
# if len(user_message) == 0:
# return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot
chatbot = chatbot + [[user_message, None]]
return user_message, chatbot
@spaces.GPU
def gradio_answer(chatbot, text_input, video_path, max_num_frames, check_asr, asr_msg, chat_state, max_new_tokens, do_sample, num_beams, top_p, temperature):
if chat_state is None or len(chat_state) == 0:
if asr_msg is None or len(asr_msg) == 0:
# text_input = f"Answer the question based on the video content.\n{text_input}"
pass
elif check_asr:
text_input = f"The speech extracted from the video via ASR is as follows: {asr_msg}\n{text_input}"
print(f"\033[91m== text_input: \033[0m\n{text_input}\n")
response, chat_state = model.chat(video_path=video_path, tokenizer=tokenizer, user_prompt=text_input, chat_history=chat_state, return_history=True, max_num_frames=max_num_frames, generation_config={
'max_new_tokens': max_new_tokens, 'do_sample':do_sample,
'num_beams':num_beams, 'top_p':top_p, 'temperature':temperature
})
current_response = ""
for char in response:
current_response += char
chatbot[-1][1] = current_response + "▌"
yield chatbot, chat_state
time.sleep(0.008)
chatbot[-1][1] = current_response
yield chatbot, chat_state
class OpenGVLab(gr.themes.base.Base):
def __init__(
self,
*,
primary_hue=colors.blue,
secondary_hue=colors.sky,
neutral_hue=colors.gray,
spacing_size=sizes.spacing_md,
radius_size=sizes.radius_sm,
text_size=sizes.text_md,
font=(
fonts.GoogleFont("Noto Sans"),
"ui-sans-serif",
"sans-serif",
),
font_mono=(
fonts.GoogleFont("IBM Plex Mono"),
"ui-monospace",
"monospace",
),
):
super().__init__(
primary_hue=primary_hue,
secondary_hue=secondary_hue,
neutral_hue=neutral_hue,
spacing_size=spacing_size,
radius_size=radius_size,
text_size=text_size,
font=font,
font_mono=font_mono,
)
super().set(
body_background_fill="*neutral_50",
)
gvlabtheme = OpenGVLab(primary_hue=colors.blue,
secondary_hue=colors.sky,
neutral_hue=colors.gray,
spacing_size=sizes.spacing_md,
radius_size=sizes.radius_sm,
text_size=sizes.text_md,
)
title = """<h1 align="center"><a href="https://github.com/OpenGVLab/VideoChat-Flash"><img src="https://s1.ax1x.com/2023/05/07/p9dBMOU.png" alt="VideoChat-Flash" border="0" style="margin: 0 auto; height: 100px;" /></a> </h1>"""
description ="""
VideoChat-Flash-7B@448 powered by InternVideo!<br><p><a href='https://github.com/OpenGVLab/VideoChat-Flash'><img src='https://img.shields.io/badge/Github-Code-blue'></a></p><p>
"""
with gr.Blocks(title="VideoChat-Flash",theme=gvlabtheme,css="#chatbot {overflow:auto; height:500px;} #InputVideo {overflow:visible; height:320px;} footer {visibility: none}") as demo:
gr.Markdown(title)
gr.Markdown(description)
# with gr.Row():
# # options_yes_no = ["YES", "NO"]
# # with gr.Row():
# # radio_type = gr.Radio(choices=options_1, label="VideoChat-Flash", value=options_1[0])
# with gr.Row():
with gr.Row():
with gr.Column(scale=0.5, visible=True) as video_upload:
with gr.Column(elem_id="image", scale=0.5) as img_part:
up_video = gr.Video(interactive=True, include_audio=True, elem_id="video_upload")
upload_button = gr.Button(value="Upload & Start Chat", interactive=True, variant="primary")
restart = gr.Button("Restart")
max_num_frames = gr.Slider(
minimum=4,
maximum=1024,
value=512,
step=4,
interactive=True,
label="Max Input Frames",
)
max_new_tokens = gr.Slider(
minimum=1,
maximum=4096,
value=1024,
step=1,
interactive=True,
label="Max Output Tokens",
)
check_asr = gr.Checkbox(label="Use ASR", info="Whether to extract speech using ASR.")
check_do_sample = gr.Checkbox(label="Do Sample", info="Whether to do sample during decoding.")
num_beams = gr.Slider(
minimum=1,
maximum=10,
value=1,
step=1,
interactive=True,
visible=False,
label="beam search numbers)",
)
top_p = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.1,
step=0.1,
visible=False,
interactive=True, label="Top_P",
)
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.1,
step=0.1,
visible=False,
interactive=True, label="Temperature",
)
def toggle_slide(is_checked):
return gr.update(visible=is_checked), gr.update(visible=is_checked), gr.update(visible=is_checked)
check_do_sample.select(fn=toggle_slide, inputs=check_do_sample, outputs=[num_beams, top_p, temperature])
with gr.Column(visible=True) as input_raws:
chat_state = gr.State([])
asr_msg = gr.State()
chatbot = gr.Chatbot(
elem_id="chatbot",
label='VideoChat',
avatar_images=[
"avatar/human.jpg", # 用户头像
"avatar/assistant.png", # AI头像
])
with gr.Row():
with gr.Column(scale=0.7):
text_input = gr.Textbox(show_label=False, placeholder='Please upload your video first', interactive=False)
with gr.Column(scale=0.15, min_width=0):
run = gr.Button("💭Send", interactive=False)
with gr.Column(scale=0.15, min_width=0):
clear = gr.Button("🔄Clear️", interactive=False)
with gr.Row():
examples = gr.Examples(
examples=[
["demo_videos/basketball.mp4", False, "Describe this video in detail."],
["demo_videos/cup1.mp4", False, "Describe this video in detail."],
["demo_videos/dog.mp4", False, "Describe this video in detail."],
],
inputs = [up_video, text_input],
outputs = [run, clear, up_video, text_input, upload_button, asr_msg],
fn=upload_video,
run_on_click=True
)
up_video.clear(gradio_reset, None, [chatbot, up_video, text_input, run, clear, upload_button, chat_state, asr_msg], queue=False)
upload_button.click(upload_video, [up_video], [run, clear, up_video, text_input, upload_button, asr_msg])
text_input.submit(gradio_ask, [text_input, chatbot], [text_input, chatbot]).then(
gradio_answer, [chatbot, text_input, up_video, max_num_frames, check_asr, asr_msg, chat_state, max_new_tokens, check_do_sample, num_beams, top_p, temperature], [chatbot, chat_state]
).then(lambda: "", None, text_input)
run.click(gradio_ask, [text_input, chatbot], [text_input, chatbot]).then(
gradio_answer, [chatbot, text_input, up_video, max_num_frames, check_asr, asr_msg, chat_state, max_new_tokens, check_do_sample, num_beams, top_p, temperature], [chatbot, chat_state]
).then(lambda: "", None, text_input)
clear.click(clear_, None, [chatbot, chat_state])
restart.click(gradio_reset, None, [chatbot, up_video, text_input, run, clear, upload_button, chat_state, asr_msg], queue=False)
demo.launch(server_name='0.0.0.0',server_port=7864) |