Spaces:
Sleeping
Sleeping
init space
Browse files- LightZero/.gitignore +3 -8
- LightZero/lzero/mcts/ctree/ctree_efficientzero/lib/cnode.cpp +792 -0
- LightZero/lzero/mcts/ctree/ctree_efficientzero/lib/cnode.h +91 -0
- LightZero/lzero/mcts/ctree/ctree_gumbel_muzero/lib/cnode.cpp +1154 -0
- LightZero/lzero/mcts/ctree/ctree_gumbel_muzero/lib/cnode.h +109 -0
- LightZero/lzero/mcts/ctree/ctree_muzero/lib/cnode.cpp +715 -0
- LightZero/lzero/mcts/ctree/ctree_muzero/lib/cnode.h +91 -0
- LightZero/lzero/mcts/ctree/ctree_sampled_efficientzero/lib/cnode.cpp +1189 -0
- LightZero/lzero/mcts/ctree/ctree_sampled_efficientzero/lib/cnode.h +123 -0
- LightZero/lzero/mcts/ctree/ctree_stochastic_muzero/lib/cnode.cpp +787 -0
- LightZero/lzero/mcts/ctree/ctree_stochastic_muzero/lib/cnode.h +95 -0
LightZero/.gitignore
CHANGED
@@ -741,8 +741,8 @@ develop-eggs/
|
|
741 |
downloads/
|
742 |
eggs/
|
743 |
.eggs/
|
744 |
-
|
745 |
-
|
746 |
parts/
|
747 |
sdist/
|
748 |
var/
|
@@ -982,11 +982,6 @@ dist
|
|
982 |
### VirtualEnv template
|
983 |
# Virtualenv
|
984 |
# http://iamzed.com/2009/05/07/a-primer-on-virtualenv/
|
985 |
-
[Bb]in
|
986 |
-
[Ii]nclude
|
987 |
-
[Ll]ib
|
988 |
-
[Ll]ib64
|
989 |
-
[Ll]ocal
|
990 |
pyvenv.cfg
|
991 |
pip-selfcheck.json
|
992 |
|
@@ -1050,7 +1045,7 @@ Temporary Items
|
|
1050 |
*.gch
|
1051 |
|
1052 |
# Libraries
|
1053 |
-
|
1054 |
*.a
|
1055 |
*.la
|
1056 |
*.lo
|
|
|
741 |
downloads/
|
742 |
eggs/
|
743 |
.eggs/
|
744 |
+
|
745 |
+
|
746 |
parts/
|
747 |
sdist/
|
748 |
var/
|
|
|
982 |
### VirtualEnv template
|
983 |
# Virtualenv
|
984 |
# http://iamzed.com/2009/05/07/a-primer-on-virtualenv/
|
|
|
|
|
|
|
|
|
|
|
985 |
pyvenv.cfg
|
986 |
pip-selfcheck.json
|
987 |
|
|
|
1045 |
*.gch
|
1046 |
|
1047 |
# Libraries
|
1048 |
+
|
1049 |
*.a
|
1050 |
*.la
|
1051 |
*.lo
|
LightZero/lzero/mcts/ctree/ctree_efficientzero/lib/cnode.cpp
ADDED
@@ -0,0 +1,792 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// C++11
|
2 |
+
|
3 |
+
#include <iostream>
|
4 |
+
#include "cnode.h"
|
5 |
+
#include <algorithm>
|
6 |
+
#include <map>
|
7 |
+
#include <cassert>
|
8 |
+
|
9 |
+
#ifdef _WIN32
|
10 |
+
#include "..\..\common_lib\utils.cpp"
|
11 |
+
#else
|
12 |
+
#include "../../common_lib/utils.cpp"
|
13 |
+
#endif
|
14 |
+
|
15 |
+
|
16 |
+
namespace tree
|
17 |
+
{
|
18 |
+
|
19 |
+
CSearchResults::CSearchResults()
|
20 |
+
{
|
21 |
+
/*
|
22 |
+
Overview:
|
23 |
+
Initialization of CSearchResults, the default result number is set to 0.
|
24 |
+
*/
|
25 |
+
this->num = 0;
|
26 |
+
}
|
27 |
+
|
28 |
+
CSearchResults::CSearchResults(int num)
|
29 |
+
{
|
30 |
+
/*
|
31 |
+
Overview:
|
32 |
+
Initialization of CSearchResults with result number.
|
33 |
+
*/
|
34 |
+
this->num = num;
|
35 |
+
for (int i = 0; i < num; ++i)
|
36 |
+
{
|
37 |
+
this->search_paths.push_back(std::vector<CNode *>());
|
38 |
+
}
|
39 |
+
}
|
40 |
+
|
41 |
+
CSearchResults::~CSearchResults() {}
|
42 |
+
|
43 |
+
//*********************************************************
|
44 |
+
|
45 |
+
CNode::CNode()
|
46 |
+
{
|
47 |
+
/*
|
48 |
+
Overview:
|
49 |
+
Initialization of CNode.
|
50 |
+
*/
|
51 |
+
this->prior = 0;
|
52 |
+
this->legal_actions = legal_actions;
|
53 |
+
|
54 |
+
this->is_reset = 0;
|
55 |
+
this->visit_count = 0;
|
56 |
+
this->value_sum = 0;
|
57 |
+
this->best_action = -1;
|
58 |
+
this->to_play = 0;
|
59 |
+
this->value_prefix = 0.0;
|
60 |
+
this->parent_value_prefix = 0.0;
|
61 |
+
}
|
62 |
+
|
63 |
+
CNode::CNode(float prior, std::vector<int> &legal_actions)
|
64 |
+
{
|
65 |
+
/*
|
66 |
+
Overview:
|
67 |
+
Initialization of CNode with prior value and legal actions.
|
68 |
+
Arguments:
|
69 |
+
- prior: the prior value of this node.
|
70 |
+
- legal_actions: a vector of legal actions of this node.
|
71 |
+
*/
|
72 |
+
this->prior = prior;
|
73 |
+
this->legal_actions = legal_actions;
|
74 |
+
|
75 |
+
this->is_reset = 0;
|
76 |
+
this->visit_count = 0;
|
77 |
+
this->value_sum = 0;
|
78 |
+
this->best_action = -1;
|
79 |
+
this->to_play = 0;
|
80 |
+
this->value_prefix = 0.0;
|
81 |
+
this->parent_value_prefix = 0.0;
|
82 |
+
this->current_latent_state_index = -1;
|
83 |
+
this->batch_index = -1;
|
84 |
+
}
|
85 |
+
|
86 |
+
CNode::~CNode() {}
|
87 |
+
|
88 |
+
void CNode::expand(int to_play, int current_latent_state_index, int batch_index, float value_prefix, const std::vector<float> &policy_logits)
|
89 |
+
{
|
90 |
+
/*
|
91 |
+
Overview:
|
92 |
+
Expand the child nodes of the current node.
|
93 |
+
Arguments:
|
94 |
+
- to_play: which player to play the game in the current node.
|
95 |
+
- current_latent_state_index: the x/first index of hidden state vector of the current node, i.e. the search depth.
|
96 |
+
- batch_index: the y/second index of hidden state vector of the current node, i.e. the index of batch root node, its maximum is ``batch_size``/``env_num``.
|
97 |
+
- value_prefix: the value prefix of the current node.
|
98 |
+
- policy_logits: the policy logit of the child nodes.
|
99 |
+
*/
|
100 |
+
this->to_play = to_play;
|
101 |
+
this->current_latent_state_index = current_latent_state_index;
|
102 |
+
this->batch_index = batch_index;
|
103 |
+
this->value_prefix = value_prefix;
|
104 |
+
|
105 |
+
int action_num = policy_logits.size();
|
106 |
+
if (this->legal_actions.size() == 0)
|
107 |
+
{
|
108 |
+
for (int i = 0; i < action_num; ++i)
|
109 |
+
{
|
110 |
+
this->legal_actions.push_back(i);
|
111 |
+
}
|
112 |
+
}
|
113 |
+
float temp_policy;
|
114 |
+
float policy_sum = 0.0;
|
115 |
+
|
116 |
+
#ifdef _WIN32
|
117 |
+
// 创建动态数组
|
118 |
+
float* policy = new float[action_num];
|
119 |
+
#else
|
120 |
+
float policy[action_num];
|
121 |
+
#endif
|
122 |
+
|
123 |
+
float policy_max = FLOAT_MIN;
|
124 |
+
for (auto a : this->legal_actions)
|
125 |
+
{
|
126 |
+
if (policy_max < policy_logits[a])
|
127 |
+
{
|
128 |
+
policy_max = policy_logits[a];
|
129 |
+
}
|
130 |
+
}
|
131 |
+
|
132 |
+
for (auto a : this->legal_actions)
|
133 |
+
{
|
134 |
+
temp_policy = exp(policy_logits[a] - policy_max);
|
135 |
+
policy_sum += temp_policy;
|
136 |
+
policy[a] = temp_policy;
|
137 |
+
}
|
138 |
+
|
139 |
+
float prior;
|
140 |
+
for (auto a : this->legal_actions)
|
141 |
+
{
|
142 |
+
prior = policy[a] / policy_sum;
|
143 |
+
std::vector<int> tmp_empty;
|
144 |
+
this->children[a] = CNode(prior, tmp_empty); // only for muzero/efficient zero, not support alphazero
|
145 |
+
}
|
146 |
+
#ifdef _WIN32
|
147 |
+
// 释放数组内存
|
148 |
+
delete[] policy;
|
149 |
+
#else
|
150 |
+
#endif
|
151 |
+
}
|
152 |
+
|
153 |
+
void CNode::add_exploration_noise(float exploration_fraction, const std::vector<float> &noises)
|
154 |
+
{
|
155 |
+
/*
|
156 |
+
Overview:
|
157 |
+
Add a noise to the prior of the child nodes.
|
158 |
+
Arguments:
|
159 |
+
- exploration_fraction: the fraction to add noise.
|
160 |
+
- noises: the vector of noises added to each child node.
|
161 |
+
*/
|
162 |
+
float noise, prior;
|
163 |
+
for (int i = 0; i < this->legal_actions.size(); ++i)
|
164 |
+
{
|
165 |
+
noise = noises[i];
|
166 |
+
CNode *child = this->get_child(this->legal_actions[i]);
|
167 |
+
|
168 |
+
prior = child->prior;
|
169 |
+
child->prior = prior * (1 - exploration_fraction) + noise * exploration_fraction;
|
170 |
+
}
|
171 |
+
}
|
172 |
+
|
173 |
+
float CNode::compute_mean_q(int isRoot, float parent_q, float discount_factor)
|
174 |
+
{
|
175 |
+
/*
|
176 |
+
Overview:
|
177 |
+
Compute the mean q value of the current node.
|
178 |
+
Arguments:
|
179 |
+
- isRoot: whether the current node is a root node.
|
180 |
+
- parent_q: the q value of the parent node.
|
181 |
+
- discount_factor: the discount_factor of reward.
|
182 |
+
*/
|
183 |
+
float total_unsigned_q = 0.0;
|
184 |
+
int total_visits = 0;
|
185 |
+
float parent_value_prefix = this->value_prefix;
|
186 |
+
for (auto a : this->legal_actions)
|
187 |
+
{
|
188 |
+
CNode *child = this->get_child(a);
|
189 |
+
if (child->visit_count > 0)
|
190 |
+
{
|
191 |
+
float true_reward = child->value_prefix - parent_value_prefix;
|
192 |
+
if (this->is_reset == 1)
|
193 |
+
{
|
194 |
+
true_reward = child->value_prefix;
|
195 |
+
}
|
196 |
+
float qsa = true_reward + discount_factor * child->value();
|
197 |
+
total_unsigned_q += qsa;
|
198 |
+
total_visits += 1;
|
199 |
+
}
|
200 |
+
}
|
201 |
+
|
202 |
+
float mean_q = 0.0;
|
203 |
+
if (isRoot && total_visits > 0)
|
204 |
+
{
|
205 |
+
mean_q = (total_unsigned_q) / (total_visits);
|
206 |
+
}
|
207 |
+
else
|
208 |
+
{
|
209 |
+
mean_q = (parent_q + total_unsigned_q) / (total_visits + 1);
|
210 |
+
}
|
211 |
+
return mean_q;
|
212 |
+
}
|
213 |
+
|
214 |
+
void CNode::print_out()
|
215 |
+
{
|
216 |
+
return;
|
217 |
+
}
|
218 |
+
|
219 |
+
int CNode::expanded()
|
220 |
+
{
|
221 |
+
/*
|
222 |
+
Overview:
|
223 |
+
Return whether the current node is expanded.
|
224 |
+
*/
|
225 |
+
return this->children.size() > 0;
|
226 |
+
}
|
227 |
+
|
228 |
+
float CNode::value()
|
229 |
+
{
|
230 |
+
/*
|
231 |
+
Overview:
|
232 |
+
Return the estimated value of the current tree.
|
233 |
+
*/
|
234 |
+
float true_value = 0.0;
|
235 |
+
if (this->visit_count == 0)
|
236 |
+
{
|
237 |
+
return true_value;
|
238 |
+
}
|
239 |
+
else
|
240 |
+
{
|
241 |
+
true_value = this->value_sum / this->visit_count;
|
242 |
+
return true_value;
|
243 |
+
}
|
244 |
+
}
|
245 |
+
|
246 |
+
std::vector<int> CNode::get_trajectory()
|
247 |
+
{
|
248 |
+
/*
|
249 |
+
Overview:
|
250 |
+
Find the current best trajectory starts from the current node.
|
251 |
+
Outputs:
|
252 |
+
- traj: a vector of node index, which is the current best trajectory from this node.
|
253 |
+
*/
|
254 |
+
std::vector<int> traj;
|
255 |
+
|
256 |
+
CNode *node = this;
|
257 |
+
int best_action = node->best_action;
|
258 |
+
while (best_action >= 0)
|
259 |
+
{
|
260 |
+
traj.push_back(best_action);
|
261 |
+
|
262 |
+
node = node->get_child(best_action);
|
263 |
+
best_action = node->best_action;
|
264 |
+
}
|
265 |
+
return traj;
|
266 |
+
}
|
267 |
+
|
268 |
+
std::vector<int> CNode::get_children_distribution()
|
269 |
+
{
|
270 |
+
/*
|
271 |
+
Overview:
|
272 |
+
Get the distribution of child nodes in the format of visit_count.
|
273 |
+
Outputs:
|
274 |
+
- distribution: a vector of distribution of child nodes in the format of visit count (i.e. [1,3,0,2,5]).
|
275 |
+
*/
|
276 |
+
std::vector<int> distribution;
|
277 |
+
if (this->expanded())
|
278 |
+
{
|
279 |
+
for (auto a : this->legal_actions)
|
280 |
+
{
|
281 |
+
CNode *child = this->get_child(a);
|
282 |
+
distribution.push_back(child->visit_count);
|
283 |
+
}
|
284 |
+
}
|
285 |
+
return distribution;
|
286 |
+
}
|
287 |
+
|
288 |
+
CNode *CNode::get_child(int action)
|
289 |
+
{
|
290 |
+
/*
|
291 |
+
Overview:
|
292 |
+
Get the child node corresponding to the input action.
|
293 |
+
Arguments:
|
294 |
+
- action: the action to get child.
|
295 |
+
*/
|
296 |
+
return &(this->children[action]);
|
297 |
+
}
|
298 |
+
|
299 |
+
//*********************************************************
|
300 |
+
|
301 |
+
CRoots::CRoots()
|
302 |
+
{
|
303 |
+
/*
|
304 |
+
Overview:
|
305 |
+
The initialization of CRoots.
|
306 |
+
*/
|
307 |
+
this->root_num = 0;
|
308 |
+
}
|
309 |
+
|
310 |
+
CRoots::CRoots(int root_num, std::vector<std::vector<int> > &legal_actions_list)
|
311 |
+
{
|
312 |
+
/*
|
313 |
+
Overview:
|
314 |
+
The initialization of CRoots with root num and legal action lists.
|
315 |
+
Arguments:
|
316 |
+
- root_num: the number of the current root.
|
317 |
+
- legal_action_list: the vector of the legal action of this root.
|
318 |
+
*/
|
319 |
+
this->root_num = root_num;
|
320 |
+
this->legal_actions_list = legal_actions_list;
|
321 |
+
|
322 |
+
for (int i = 0; i < root_num; ++i)
|
323 |
+
{
|
324 |
+
this->roots.push_back(CNode(0, this->legal_actions_list[i]));
|
325 |
+
}
|
326 |
+
}
|
327 |
+
|
328 |
+
CRoots::~CRoots() {}
|
329 |
+
|
330 |
+
void CRoots::prepare(float root_noise_weight, const std::vector<std::vector<float> > &noises, const std::vector<float> &value_prefixs, const std::vector<std::vector<float> > &policies, std::vector<int> &to_play_batch)
|
331 |
+
{
|
332 |
+
/*
|
333 |
+
Overview:
|
334 |
+
Expand the roots and add noises.
|
335 |
+
Arguments:
|
336 |
+
- root_noise_weight: the exploration fraction of roots
|
337 |
+
- noises: the vector of noise add to the roots.
|
338 |
+
- value_prefixs: the vector of value prefixs of each root.
|
339 |
+
- policies: the vector of policy logits of each root.
|
340 |
+
- to_play_batch: the vector of the player side of each root.
|
341 |
+
*/
|
342 |
+
for (int i = 0; i < this->root_num; ++i)
|
343 |
+
{
|
344 |
+
this->roots[i].expand(to_play_batch[i], 0, i, value_prefixs[i], policies[i]);
|
345 |
+
this->roots[i].add_exploration_noise(root_noise_weight, noises[i]);
|
346 |
+
this->roots[i].visit_count += 1;
|
347 |
+
}
|
348 |
+
}
|
349 |
+
|
350 |
+
void CRoots::prepare_no_noise(const std::vector<float> &value_prefixs, const std::vector<std::vector<float> > &policies, std::vector<int> &to_play_batch)
|
351 |
+
{
|
352 |
+
/*
|
353 |
+
Overview:
|
354 |
+
Expand the roots without noise.
|
355 |
+
Arguments:
|
356 |
+
- value_prefixs: the vector of value prefixs of each root.
|
357 |
+
- policies: the vector of policy logits of each root.
|
358 |
+
- to_play_batch: the vector of the player side of each root.
|
359 |
+
*/
|
360 |
+
for (int i = 0; i < this->root_num; ++i)
|
361 |
+
{
|
362 |
+
this->roots[i].expand(to_play_batch[i], 0, i, value_prefixs[i], policies[i]);
|
363 |
+
this->roots[i].visit_count += 1;
|
364 |
+
}
|
365 |
+
}
|
366 |
+
|
367 |
+
void CRoots::clear()
|
368 |
+
{
|
369 |
+
/*
|
370 |
+
Overview:
|
371 |
+
Clear the roots vector.
|
372 |
+
*/
|
373 |
+
this->roots.clear();
|
374 |
+
}
|
375 |
+
|
376 |
+
std::vector<std::vector<int> > CRoots::get_trajectories()
|
377 |
+
{
|
378 |
+
/*
|
379 |
+
Overview:
|
380 |
+
Find the current best trajectory starts from each root.
|
381 |
+
Outputs:
|
382 |
+
- traj: a vector of node index, which is the current best trajectory from each root.
|
383 |
+
*/
|
384 |
+
std::vector<std::vector<int> > trajs;
|
385 |
+
trajs.reserve(this->root_num);
|
386 |
+
|
387 |
+
for (int i = 0; i < this->root_num; ++i)
|
388 |
+
{
|
389 |
+
trajs.push_back(this->roots[i].get_trajectory());
|
390 |
+
}
|
391 |
+
return trajs;
|
392 |
+
}
|
393 |
+
|
394 |
+
std::vector<std::vector<int> > CRoots::get_distributions()
|
395 |
+
{
|
396 |
+
/*
|
397 |
+
Overview:
|
398 |
+
Get the children distribution of each root.
|
399 |
+
Outputs:
|
400 |
+
- distribution: a vector of distribution of child nodes in the format of visit count (i.e. [1,3,0,2,5]).
|
401 |
+
*/
|
402 |
+
std::vector<std::vector<int> > distributions;
|
403 |
+
distributions.reserve(this->root_num);
|
404 |
+
|
405 |
+
for (int i = 0; i < this->root_num; ++i)
|
406 |
+
{
|
407 |
+
distributions.push_back(this->roots[i].get_children_distribution());
|
408 |
+
}
|
409 |
+
return distributions;
|
410 |
+
}
|
411 |
+
|
412 |
+
std::vector<float> CRoots::get_values()
|
413 |
+
{
|
414 |
+
/*
|
415 |
+
Overview:
|
416 |
+
Return the estimated value of each root.
|
417 |
+
*/
|
418 |
+
std::vector<float> values;
|
419 |
+
for (int i = 0; i < this->root_num; ++i)
|
420 |
+
{
|
421 |
+
values.push_back(this->roots[i].value());
|
422 |
+
}
|
423 |
+
return values;
|
424 |
+
}
|
425 |
+
|
426 |
+
//*********************************************************
|
427 |
+
//
|
428 |
+
void update_tree_q(CNode *root, tools::CMinMaxStats &min_max_stats, float discount_factor, int players)
|
429 |
+
{
|
430 |
+
/*
|
431 |
+
Overview:
|
432 |
+
Update the q value of the root and its child nodes.
|
433 |
+
Arguments:
|
434 |
+
- root: the root that update q value from.
|
435 |
+
- min_max_stats: a tool used to min-max normalize the q value.
|
436 |
+
- discount_factor: the discount factor of reward.
|
437 |
+
- players: the number of players.
|
438 |
+
*/
|
439 |
+
std::stack<CNode *> node_stack;
|
440 |
+
node_stack.push(root);
|
441 |
+
float parent_value_prefix = 0.0;
|
442 |
+
int is_reset = 0;
|
443 |
+
while (node_stack.size() > 0)
|
444 |
+
{
|
445 |
+
CNode *node = node_stack.top();
|
446 |
+
node_stack.pop();
|
447 |
+
|
448 |
+
if (node != root)
|
449 |
+
{
|
450 |
+
// NOTE: in self-play-mode, value_prefix is not calculated according to the perspective of current player of node,
|
451 |
+
// but treated as 1 player, just for obtaining the true reward in the perspective of current player of node.
|
452 |
+
// true_reward = node.value_prefix - (- parent_value_prefix)
|
453 |
+
float true_reward = node->value_prefix - node->parent_value_prefix;
|
454 |
+
|
455 |
+
if (is_reset == 1)
|
456 |
+
{
|
457 |
+
true_reward = node->value_prefix;
|
458 |
+
}
|
459 |
+
float qsa;
|
460 |
+
if (players == 1)
|
461 |
+
{
|
462 |
+
qsa = true_reward + discount_factor * node->value();
|
463 |
+
}
|
464 |
+
else if (players == 2)
|
465 |
+
{
|
466 |
+
// TODO(pu): why only the last reward multiply the discount_factor?
|
467 |
+
qsa = true_reward + discount_factor * (-1) * node->value();
|
468 |
+
}
|
469 |
+
|
470 |
+
min_max_stats.update(qsa);
|
471 |
+
}
|
472 |
+
|
473 |
+
for (auto a : node->legal_actions)
|
474 |
+
{
|
475 |
+
CNode *child = node->get_child(a);
|
476 |
+
if (child->expanded())
|
477 |
+
{
|
478 |
+
child->parent_value_prefix = node->value_prefix;
|
479 |
+
node_stack.push(child);
|
480 |
+
}
|
481 |
+
}
|
482 |
+
|
483 |
+
is_reset = node->is_reset;
|
484 |
+
}
|
485 |
+
}
|
486 |
+
|
487 |
+
void cbackpropagate(std::vector<CNode *> &search_path, tools::CMinMaxStats &min_max_stats, int to_play, float value, float discount_factor)
|
488 |
+
{
|
489 |
+
/*
|
490 |
+
Overview:
|
491 |
+
Update the value sum and visit count of nodes along the search path.
|
492 |
+
Arguments:
|
493 |
+
- search_path: a vector of nodes on the search path.
|
494 |
+
- min_max_stats: a tool used to min-max normalize the q value.
|
495 |
+
- to_play: which player to play the game in the current node.
|
496 |
+
- value: the value to propagate along the search path.
|
497 |
+
- discount_factor: the discount factor of reward.
|
498 |
+
*/
|
499 |
+
assert(to_play == -1 || to_play == 1 || to_play == 2);
|
500 |
+
if (to_play == -1)
|
501 |
+
{
|
502 |
+
// for play-with-bot-mode
|
503 |
+
float bootstrap_value = value;
|
504 |
+
int path_len = search_path.size();
|
505 |
+
for (int i = path_len - 1; i >= 0; --i)
|
506 |
+
{
|
507 |
+
CNode *node = search_path[i];
|
508 |
+
node->value_sum += bootstrap_value;
|
509 |
+
node->visit_count += 1;
|
510 |
+
|
511 |
+
float parent_value_prefix = 0.0;
|
512 |
+
int is_reset = 0;
|
513 |
+
if (i >= 1)
|
514 |
+
{
|
515 |
+
CNode *parent = search_path[i - 1];
|
516 |
+
parent_value_prefix = parent->value_prefix;
|
517 |
+
is_reset = parent->is_reset;
|
518 |
+
}
|
519 |
+
|
520 |
+
float true_reward = node->value_prefix - parent_value_prefix;
|
521 |
+
min_max_stats.update(true_reward + discount_factor * node->value());
|
522 |
+
|
523 |
+
if (is_reset == 1)
|
524 |
+
{
|
525 |
+
// parent is reset
|
526 |
+
true_reward = node->value_prefix;
|
527 |
+
}
|
528 |
+
|
529 |
+
bootstrap_value = true_reward + discount_factor * bootstrap_value;
|
530 |
+
}
|
531 |
+
}
|
532 |
+
else
|
533 |
+
{
|
534 |
+
// for self-play-mode
|
535 |
+
float bootstrap_value = value;
|
536 |
+
int path_len = search_path.size();
|
537 |
+
for (int i = path_len - 1; i >= 0; --i)
|
538 |
+
{
|
539 |
+
CNode *node = search_path[i];
|
540 |
+
if (node->to_play == to_play)
|
541 |
+
{
|
542 |
+
node->value_sum += bootstrap_value;
|
543 |
+
}
|
544 |
+
else
|
545 |
+
{
|
546 |
+
node->value_sum += -bootstrap_value;
|
547 |
+
}
|
548 |
+
node->visit_count += 1;
|
549 |
+
|
550 |
+
float parent_value_prefix = 0.0;
|
551 |
+
int is_reset = 0;
|
552 |
+
if (i >= 1)
|
553 |
+
{
|
554 |
+
CNode *parent = search_path[i - 1];
|
555 |
+
parent_value_prefix = parent->value_prefix;
|
556 |
+
is_reset = parent->is_reset;
|
557 |
+
}
|
558 |
+
|
559 |
+
// NOTE: in self-play-mode, value_prefix is not calculated according to the perspective of current player of node,
|
560 |
+
// but treated as 1 player, just for obtaining the true reward in the perspective of current player of node.
|
561 |
+
float true_reward = node->value_prefix - parent_value_prefix;
|
562 |
+
|
563 |
+
min_max_stats.update(true_reward + discount_factor * node->value());
|
564 |
+
|
565 |
+
if (is_reset == 1)
|
566 |
+
{
|
567 |
+
// parent is reset
|
568 |
+
true_reward = node->value_prefix;
|
569 |
+
}
|
570 |
+
if (node->to_play == to_play)
|
571 |
+
{
|
572 |
+
bootstrap_value = -true_reward + discount_factor * bootstrap_value;
|
573 |
+
}
|
574 |
+
else
|
575 |
+
{
|
576 |
+
bootstrap_value = true_reward + discount_factor * bootstrap_value;
|
577 |
+
}
|
578 |
+
}
|
579 |
+
}
|
580 |
+
}
|
581 |
+
|
582 |
+
void cbatch_backpropagate(int current_latent_state_index, float discount_factor, const std::vector<float> &value_prefixs, const std::vector<float> &values, const std::vector<std::vector<float> > &policies, tools::CMinMaxStatsList *min_max_stats_lst, CSearchResults &results, std::vector<int> is_reset_list, std::vector<int> &to_play_batch)
|
583 |
+
{
|
584 |
+
/*
|
585 |
+
Overview:
|
586 |
+
Expand the nodes along the search path and update the infos.
|
587 |
+
Arguments:
|
588 |
+
- current_latent_state_index: The index of latent state of the leaf node in the search path.
|
589 |
+
- discount_factor: the discount factor of reward.
|
590 |
+
- value_prefixs: the value prefixs of nodes along the search path.
|
591 |
+
- values: the values to propagate along the search path.
|
592 |
+
- policies: the policy logits of nodes along the search path.
|
593 |
+
- min_max_stats: a tool used to min-max normalize the q value.
|
594 |
+
- results: the search results.
|
595 |
+
- is_reset_list: the vector of is_reset nodes along the search path, where is_reset represents for whether the parent value prefix needs to be reset.
|
596 |
+
- to_play_batch: the batch of which player is playing on this node.
|
597 |
+
*/
|
598 |
+
for (int i = 0; i < results.num; ++i)
|
599 |
+
{
|
600 |
+
results.nodes[i]->expand(to_play_batch[i], current_latent_state_index, i, value_prefixs[i], policies[i]);
|
601 |
+
// reset
|
602 |
+
results.nodes[i]->is_reset = is_reset_list[i];
|
603 |
+
|
604 |
+
cbackpropagate(results.search_paths[i], min_max_stats_lst->stats_lst[i], to_play_batch[i], values[i], discount_factor);
|
605 |
+
}
|
606 |
+
}
|
607 |
+
|
608 |
+
int cselect_child(CNode *root, tools::CMinMaxStats &min_max_stats, int pb_c_base, float pb_c_init, float discount_factor, float mean_q, int players)
|
609 |
+
{
|
610 |
+
/*
|
611 |
+
Overview:
|
612 |
+
Select the child node of the roots according to ucb scores.
|
613 |
+
Arguments:
|
614 |
+
- root: the roots to select the child node.
|
615 |
+
- min_max_stats: a tool used to min-max normalize the score.
|
616 |
+
- pb_c_base: constants c2 in muzero.
|
617 |
+
- pb_c_init: constants c1 in muzero.
|
618 |
+
- disount_factor: the discount factor of reward.
|
619 |
+
- mean_q: the mean q value of the parent node.
|
620 |
+
- players: the number of players.
|
621 |
+
Outputs:
|
622 |
+
- action: the action to select.
|
623 |
+
*/
|
624 |
+
float max_score = FLOAT_MIN;
|
625 |
+
const float epsilon = 0.000001;
|
626 |
+
std::vector<int> max_index_lst;
|
627 |
+
for (auto a : root->legal_actions)
|
628 |
+
{
|
629 |
+
CNode *child = root->get_child(a);
|
630 |
+
float temp_score = cucb_score(child, min_max_stats, mean_q, root->is_reset, root->visit_count - 1, root->value_prefix, pb_c_base, pb_c_init, discount_factor, players);
|
631 |
+
|
632 |
+
if (max_score < temp_score)
|
633 |
+
{
|
634 |
+
max_score = temp_score;
|
635 |
+
|
636 |
+
max_index_lst.clear();
|
637 |
+
max_index_lst.push_back(a);
|
638 |
+
}
|
639 |
+
else if (temp_score >= max_score - epsilon)
|
640 |
+
{
|
641 |
+
max_index_lst.push_back(a);
|
642 |
+
}
|
643 |
+
}
|
644 |
+
|
645 |
+
int action = 0;
|
646 |
+
if (max_index_lst.size() > 0)
|
647 |
+
{
|
648 |
+
int rand_index = rand() % max_index_lst.size();
|
649 |
+
action = max_index_lst[rand_index];
|
650 |
+
}
|
651 |
+
return action;
|
652 |
+
}
|
653 |
+
|
654 |
+
float cucb_score(CNode *child, tools::CMinMaxStats &min_max_stats, float parent_mean_q, int is_reset, float total_children_visit_counts, float parent_value_prefix, float pb_c_base, float pb_c_init, float discount_factor, int players)
|
655 |
+
{
|
656 |
+
/*
|
657 |
+
Overview:
|
658 |
+
Compute the ucb score of the child.
|
659 |
+
Arguments:
|
660 |
+
- child: the child node to compute ucb score.
|
661 |
+
- min_max_stats: a tool used to min-max normalize the score.
|
662 |
+
- parent_mean_q: the mean q value of the parent node.
|
663 |
+
- is_reset: whether the value prefix needs to be reset.
|
664 |
+
- total_children_visit_counts: the total visit counts of the child nodes of the parent node.
|
665 |
+
- parent_value_prefix: the value prefix of parent node.
|
666 |
+
- pb_c_base: constants c2 in muzero.
|
667 |
+
- pb_c_init: constants c1 in muzero.
|
668 |
+
- disount_factor: the discount factor of reward.
|
669 |
+
- players: the number of players.
|
670 |
+
Outputs:
|
671 |
+
- ucb_value: the ucb score of the child.
|
672 |
+
*/
|
673 |
+
float pb_c = 0.0, prior_score = 0.0, value_score = 0.0;
|
674 |
+
pb_c = log((total_children_visit_counts + pb_c_base + 1) / pb_c_base) + pb_c_init;
|
675 |
+
pb_c *= (sqrt(total_children_visit_counts) / (child->visit_count + 1));
|
676 |
+
|
677 |
+
prior_score = pb_c * child->prior;
|
678 |
+
if (child->visit_count == 0)
|
679 |
+
{
|
680 |
+
value_score = parent_mean_q;
|
681 |
+
}
|
682 |
+
else
|
683 |
+
{
|
684 |
+
float true_reward = child->value_prefix - parent_value_prefix;
|
685 |
+
if (is_reset == 1)
|
686 |
+
{
|
687 |
+
true_reward = child->value_prefix;
|
688 |
+
}
|
689 |
+
|
690 |
+
if (players == 1)
|
691 |
+
{
|
692 |
+
value_score = true_reward + discount_factor * child->value();
|
693 |
+
}
|
694 |
+
else if (players == 2)
|
695 |
+
{
|
696 |
+
value_score = true_reward + discount_factor * (-child->value());
|
697 |
+
}
|
698 |
+
}
|
699 |
+
|
700 |
+
value_score = min_max_stats.normalize(value_score);
|
701 |
+
|
702 |
+
if (value_score < 0)
|
703 |
+
{
|
704 |
+
value_score = 0;
|
705 |
+
}
|
706 |
+
else if (value_score > 1)
|
707 |
+
{
|
708 |
+
value_score = 1;
|
709 |
+
}
|
710 |
+
|
711 |
+
return prior_score + value_score; // ucb_value
|
712 |
+
}
|
713 |
+
|
714 |
+
void cbatch_traverse(CRoots *roots, int pb_c_base, float pb_c_init, float discount_factor, tools::CMinMaxStatsList *min_max_stats_lst, CSearchResults &results, std::vector<int> &virtual_to_play_batch)
|
715 |
+
{
|
716 |
+
/*
|
717 |
+
Overview:
|
718 |
+
Search node path from the roots.
|
719 |
+
Arguments:
|
720 |
+
- roots: the roots that search from.
|
721 |
+
- pb_c_base: constants c2 in muzero.
|
722 |
+
- pb_c_init: constants c1 in muzero.
|
723 |
+
- disount_factor: the discount factor of reward.
|
724 |
+
- min_max_stats: a tool used to min-max normalize the score.
|
725 |
+
- results: the search results.
|
726 |
+
- virtual_to_play_batch: the batch of which player is playing on this node.
|
727 |
+
*/
|
728 |
+
// set seed
|
729 |
+
get_time_and_set_rand_seed();
|
730 |
+
|
731 |
+
int last_action = -1;
|
732 |
+
float parent_q = 0.0;
|
733 |
+
results.search_lens = std::vector<int>();
|
734 |
+
|
735 |
+
int players = 0;
|
736 |
+
int largest_element = *max_element(virtual_to_play_batch.begin(), virtual_to_play_batch.end()); // 0 or 2
|
737 |
+
if (largest_element == -1)
|
738 |
+
{
|
739 |
+
players = 1;
|
740 |
+
}
|
741 |
+
else
|
742 |
+
{
|
743 |
+
players = 2;
|
744 |
+
}
|
745 |
+
|
746 |
+
for (int i = 0; i < results.num; ++i)
|
747 |
+
{
|
748 |
+
CNode *node = &(roots->roots[i]);
|
749 |
+
int is_root = 1;
|
750 |
+
int search_len = 0;
|
751 |
+
results.search_paths[i].push_back(node);
|
752 |
+
|
753 |
+
while (node->expanded())
|
754 |
+
{
|
755 |
+
float mean_q = node->compute_mean_q(is_root, parent_q, discount_factor);
|
756 |
+
is_root = 0;
|
757 |
+
parent_q = mean_q;
|
758 |
+
|
759 |
+
int action = cselect_child(node, min_max_stats_lst->stats_lst[i], pb_c_base, pb_c_init, discount_factor, mean_q, players);
|
760 |
+
if (players > 1)
|
761 |
+
{
|
762 |
+
assert(virtual_to_play_batch[i] == 1 || virtual_to_play_batch[i] == 2);
|
763 |
+
if (virtual_to_play_batch[i] == 1)
|
764 |
+
{
|
765 |
+
virtual_to_play_batch[i] = 2;
|
766 |
+
}
|
767 |
+
else
|
768 |
+
{
|
769 |
+
virtual_to_play_batch[i] = 1;
|
770 |
+
}
|
771 |
+
}
|
772 |
+
|
773 |
+
node->best_action = action;
|
774 |
+
// next
|
775 |
+
node = node->get_child(action);
|
776 |
+
last_action = action;
|
777 |
+
results.search_paths[i].push_back(node);
|
778 |
+
search_len += 1;
|
779 |
+
}
|
780 |
+
|
781 |
+
CNode *parent = results.search_paths[i][results.search_paths[i].size() - 2];
|
782 |
+
|
783 |
+
results.latent_state_index_in_search_path.push_back(parent->current_latent_state_index);
|
784 |
+
results.latent_state_index_in_batch.push_back(parent->batch_index);
|
785 |
+
|
786 |
+
results.last_actions.push_back(last_action);
|
787 |
+
results.search_lens.push_back(search_len);
|
788 |
+
results.nodes.push_back(node);
|
789 |
+
results.virtual_to_play_batchs.push_back(virtual_to_play_batch[i]);
|
790 |
+
}
|
791 |
+
}
|
792 |
+
}
|
LightZero/lzero/mcts/ctree/ctree_efficientzero/lib/cnode.h
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// C++11
|
2 |
+
|
3 |
+
#ifndef CNODE_H
|
4 |
+
#define CNODE_H
|
5 |
+
|
6 |
+
#include "../../common_lib/cminimax.h"
|
7 |
+
#include <math.h>
|
8 |
+
#include <vector>
|
9 |
+
#include <stack>
|
10 |
+
#include <stdlib.h>
|
11 |
+
#include <time.h>
|
12 |
+
#include <cmath>
|
13 |
+
#include <sys/timeb.h>
|
14 |
+
#include <time.h>
|
15 |
+
#include <map>
|
16 |
+
|
17 |
+
const int DEBUG_MODE = 0;
|
18 |
+
|
19 |
+
namespace tree {
|
20 |
+
class CNode {
|
21 |
+
public:
|
22 |
+
int visit_count, to_play, current_latent_state_index, batch_index, best_action, is_reset;
|
23 |
+
float value_prefix, prior, value_sum;
|
24 |
+
float parent_value_prefix;
|
25 |
+
std::vector<int> children_index;
|
26 |
+
std::map<int, CNode> children;
|
27 |
+
|
28 |
+
std::vector<int> legal_actions;
|
29 |
+
|
30 |
+
CNode();
|
31 |
+
CNode(float prior, std::vector<int> &legal_actions);
|
32 |
+
~CNode();
|
33 |
+
|
34 |
+
void expand(int to_play, int current_latent_state_index, int batch_index, float value_prefix, const std::vector<float> &policy_logits);
|
35 |
+
void add_exploration_noise(float exploration_fraction, const std::vector<float> &noises);
|
36 |
+
float compute_mean_q(int isRoot, float parent_q, float discount_factor);
|
37 |
+
void print_out();
|
38 |
+
|
39 |
+
int expanded();
|
40 |
+
|
41 |
+
float value();
|
42 |
+
|
43 |
+
std::vector<int> get_trajectory();
|
44 |
+
std::vector<int> get_children_distribution();
|
45 |
+
CNode* get_child(int action);
|
46 |
+
};
|
47 |
+
|
48 |
+
class CRoots{
|
49 |
+
public:
|
50 |
+
int root_num;
|
51 |
+
std::vector<CNode> roots;
|
52 |
+
std::vector<std::vector<int> > legal_actions_list;
|
53 |
+
|
54 |
+
CRoots();
|
55 |
+
CRoots(int root_num, std::vector<std::vector<int> > &legal_actions_list);
|
56 |
+
~CRoots();
|
57 |
+
|
58 |
+
void prepare(float root_noise_weight, const std::vector<std::vector<float> > &noises, const std::vector<float> &value_prefixs, const std::vector<std::vector<float> > &policies, std::vector<int> &to_play_batch);
|
59 |
+
void prepare_no_noise(const std::vector<float> &value_prefixs, const std::vector<std::vector<float> > &policies, std::vector<int> &to_play_batch);
|
60 |
+
void clear();
|
61 |
+
std::vector<std::vector<int> > get_trajectories();
|
62 |
+
std::vector<std::vector<int> > get_distributions();
|
63 |
+
std::vector<float> get_values();
|
64 |
+
CNode* get_root(int index);
|
65 |
+
};
|
66 |
+
|
67 |
+
class CSearchResults{
|
68 |
+
public:
|
69 |
+
int num;
|
70 |
+
std::vector<int> latent_state_index_in_search_path, latent_state_index_in_batch, last_actions, search_lens;
|
71 |
+
std::vector<int> virtual_to_play_batchs;
|
72 |
+
std::vector<CNode*> nodes;
|
73 |
+
std::vector<std::vector<CNode*> > search_paths;
|
74 |
+
|
75 |
+
CSearchResults();
|
76 |
+
CSearchResults(int num);
|
77 |
+
~CSearchResults();
|
78 |
+
|
79 |
+
};
|
80 |
+
|
81 |
+
|
82 |
+
//*********************************************************
|
83 |
+
void update_tree_q(CNode* root, tools::CMinMaxStats &min_max_stats, float discount_factor, int players);
|
84 |
+
void cbackpropagate(std::vector<CNode*> &search_path, tools::CMinMaxStats &min_max_stats, int to_play, float value, float discount_factor);
|
85 |
+
void cbatch_backpropagate(int current_latent_state_index, float discount_factor, const std::vector<float> &value_prefixs, const std::vector<float> &values, const std::vector<std::vector<float> > &policies, tools::CMinMaxStatsList *min_max_stats_lst, CSearchResults &results, std::vector<int> is_reset_list, std::vector<int> &to_play_batch);
|
86 |
+
int cselect_child(CNode* root, tools::CMinMaxStats &min_max_stats, int pb_c_base, float pb_c_init, float discount_factor, float mean_q, int players);
|
87 |
+
float cucb_score(CNode *child, tools::CMinMaxStats &min_max_stats, float parent_mean_q, int is_reset, float total_children_visit_counts, float parent_value_prefix, float pb_c_base, float pb_c_init, float discount_factor, int players);
|
88 |
+
void cbatch_traverse(CRoots *roots, int pb_c_base, float pb_c_init, float discount_factor, tools::CMinMaxStatsList *min_max_stats_lst, CSearchResults &results, std::vector<int> &virtual_to_play_batch);
|
89 |
+
}
|
90 |
+
|
91 |
+
#endif
|
LightZero/lzero/mcts/ctree/ctree_gumbel_muzero/lib/cnode.cpp
ADDED
@@ -0,0 +1,1154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// C++11
|
2 |
+
|
3 |
+
#include <iostream>
|
4 |
+
#include "cnode.h"
|
5 |
+
#include <algorithm>
|
6 |
+
#include <map>
|
7 |
+
#include <cmath>
|
8 |
+
#include <random>
|
9 |
+
#include <numeric>
|
10 |
+
|
11 |
+
#ifdef _WIN32
|
12 |
+
#include "..\..\common_lib\utils.cpp"
|
13 |
+
#else
|
14 |
+
#include "../../common_lib/utils.cpp"
|
15 |
+
#endif
|
16 |
+
|
17 |
+
namespace tree{
|
18 |
+
|
19 |
+
CSearchResults::CSearchResults()
|
20 |
+
{
|
21 |
+
/*
|
22 |
+
Overview:
|
23 |
+
Initialization of CSearchResults, the default result number is set to 0.
|
24 |
+
*/
|
25 |
+
this->num = 0;
|
26 |
+
}
|
27 |
+
|
28 |
+
CSearchResults::CSearchResults(int num)
|
29 |
+
{
|
30 |
+
/*
|
31 |
+
Overview:
|
32 |
+
Initialization of CSearchResults with result number.
|
33 |
+
*/
|
34 |
+
this->num = num;
|
35 |
+
for (int i = 0; i < num; ++i)
|
36 |
+
{
|
37 |
+
this->search_paths.push_back(std::vector<CNode *>());
|
38 |
+
}
|
39 |
+
}
|
40 |
+
|
41 |
+
CSearchResults::~CSearchResults(){}
|
42 |
+
|
43 |
+
//*********************************************************
|
44 |
+
|
45 |
+
CNode::CNode()
|
46 |
+
{
|
47 |
+
/*
|
48 |
+
Overview:
|
49 |
+
Initialization of CNode.
|
50 |
+
*/
|
51 |
+
this->prior = 0;
|
52 |
+
this->legal_actions = legal_actions;
|
53 |
+
|
54 |
+
this->visit_count = 0;
|
55 |
+
this->value_sum = 0;
|
56 |
+
this->raw_value = 0; // the value network approximation of value
|
57 |
+
this->best_action = -1;
|
58 |
+
this->to_play = 0;
|
59 |
+
this->reward = 0.0;
|
60 |
+
|
61 |
+
// gumbel muzero related code
|
62 |
+
this->gumbel_scale = 10.0;
|
63 |
+
this->gumbel_rng=0.0;
|
64 |
+
}
|
65 |
+
|
66 |
+
CNode::CNode(float prior, std::vector<int> &legal_actions)
|
67 |
+
{
|
68 |
+
/*
|
69 |
+
Overview:
|
70 |
+
Initialization of CNode with prior value and legal actions.
|
71 |
+
Arguments:
|
72 |
+
- prior: the prior value of this node.
|
73 |
+
- legal_actions: a vector of legal actions of this node.
|
74 |
+
*/
|
75 |
+
this->prior = prior;
|
76 |
+
this->legal_actions = legal_actions;
|
77 |
+
|
78 |
+
this->visit_count = 0;
|
79 |
+
this->value_sum = 0;
|
80 |
+
this->raw_value = 0; // the value network approximation of value
|
81 |
+
this->best_action = -1;
|
82 |
+
this->to_play = 0;
|
83 |
+
this->current_latent_state_index = -1;
|
84 |
+
this->batch_index = -1;
|
85 |
+
|
86 |
+
// gumbel muzero related code
|
87 |
+
this->gumbel_scale = 10.0;
|
88 |
+
this->gumbel_rng=0.0;
|
89 |
+
this->gumbel = generate_gumbel(this->gumbel_scale, this->gumbel_rng, legal_actions.size());
|
90 |
+
}
|
91 |
+
|
92 |
+
CNode::~CNode(){}
|
93 |
+
|
94 |
+
void CNode::expand(int to_play, int current_latent_state_index, int batch_index, float reward, float value, const std::vector<float> &policy_logits)
|
95 |
+
{
|
96 |
+
/*
|
97 |
+
Overview:
|
98 |
+
Expand the child nodes of the current node.
|
99 |
+
Arguments:
|
100 |
+
- to_play: which player to play the game in the current node.
|
101 |
+
- current_latent_state_index: The index of latent state of the leaf node in the search path of the current node.
|
102 |
+
- batch_index: The index of latent state of the leaf node in the search path of the current node.
|
103 |
+
- reward: the reward of the current node.
|
104 |
+
- value: the value network approximation of current node.
|
105 |
+
- policy_logits: the logit of the child nodes.
|
106 |
+
*/
|
107 |
+
this->to_play = to_play;
|
108 |
+
this->current_latent_state_index = current_latent_state_index;
|
109 |
+
this->batch_index = batch_index;
|
110 |
+
this->reward = reward;
|
111 |
+
this->raw_value = value;
|
112 |
+
|
113 |
+
int action_num = policy_logits.size();
|
114 |
+
if (this->legal_actions.size() == 0)
|
115 |
+
{
|
116 |
+
for (int i = 0; i < action_num; ++i)
|
117 |
+
{
|
118 |
+
this->legal_actions.push_back(i);
|
119 |
+
}
|
120 |
+
}
|
121 |
+
float temp_policy;
|
122 |
+
float policy_sum = 0.0;
|
123 |
+
|
124 |
+
#ifdef _WIN32
|
125 |
+
// 创建动态数组
|
126 |
+
float* policy = new float[action_num];
|
127 |
+
#else
|
128 |
+
float policy[action_num];
|
129 |
+
#endif
|
130 |
+
|
131 |
+
float policy_max = FLOAT_MIN;
|
132 |
+
for(auto a: this->legal_actions){
|
133 |
+
if(policy_max < policy_logits[a]){
|
134 |
+
policy_max = policy_logits[a];
|
135 |
+
}
|
136 |
+
}
|
137 |
+
|
138 |
+
for(auto a: this->legal_actions){
|
139 |
+
temp_policy = exp(policy_logits[a] - policy_max);
|
140 |
+
policy_sum += temp_policy;
|
141 |
+
policy[a] = temp_policy;
|
142 |
+
}
|
143 |
+
|
144 |
+
float prior;
|
145 |
+
for(auto a: this->legal_actions){
|
146 |
+
prior = policy[a] / policy_sum;
|
147 |
+
std::vector<int> tmp_empty;
|
148 |
+
this->children[a] = CNode(prior, tmp_empty); // only for muzero/efficient zero, not support alphazero
|
149 |
+
}
|
150 |
+
|
151 |
+
#ifdef _WIN32
|
152 |
+
// 释放数组内存
|
153 |
+
delete[] policy;
|
154 |
+
#else
|
155 |
+
#endif
|
156 |
+
}
|
157 |
+
|
158 |
+
void CNode::add_exploration_noise(float exploration_fraction, const std::vector<float> &noises)
|
159 |
+
{
|
160 |
+
/*
|
161 |
+
Overview:
|
162 |
+
Add a noise to the prior of the child nodes.
|
163 |
+
Arguments:
|
164 |
+
- exploration_fraction: the fraction to add noise.
|
165 |
+
- noises: the vector of noises added to each child node.
|
166 |
+
*/
|
167 |
+
float noise, prior;
|
168 |
+
for(int i =0; i<this->legal_actions.size(); ++i){
|
169 |
+
noise = noises[i];
|
170 |
+
CNode* child = this->get_child(this->legal_actions[i]);
|
171 |
+
|
172 |
+
prior = child->prior;
|
173 |
+
child->prior = prior * (1 - exploration_fraction) + noise * exploration_fraction;
|
174 |
+
}
|
175 |
+
}
|
176 |
+
|
177 |
+
//*********************************************************
|
178 |
+
// Gumbel Muzero related code
|
179 |
+
//*********************************************************
|
180 |
+
|
181 |
+
std::vector<float> CNode::get_q(float discount_factor)
|
182 |
+
{
|
183 |
+
/*
|
184 |
+
Overview:
|
185 |
+
Compute the q value of the current node.
|
186 |
+
Arguments:
|
187 |
+
- discount_factor: the discount_factor of reward.
|
188 |
+
*/
|
189 |
+
std::vector<float> child_value;
|
190 |
+
for(auto a: this->legal_actions){
|
191 |
+
CNode* child = this->get_child(a);
|
192 |
+
float true_reward = child->reward;
|
193 |
+
float qsa = true_reward + discount_factor * child->value();
|
194 |
+
child_value.push_back(qsa);
|
195 |
+
}
|
196 |
+
return child_value;
|
197 |
+
}
|
198 |
+
|
199 |
+
float CNode::compute_mean_q(int isRoot, float parent_q, float discount_factor)
|
200 |
+
{
|
201 |
+
/*
|
202 |
+
Overview:
|
203 |
+
Compute the mean q value of the current node.
|
204 |
+
Arguments:
|
205 |
+
- isRoot: whether the current node is a root node.
|
206 |
+
- parent_q: the q value of the parent node.
|
207 |
+
- discount_factor: the discount_factor of reward.
|
208 |
+
*/
|
209 |
+
float total_unsigned_q = 0.0;
|
210 |
+
int total_visits = 0;
|
211 |
+
for(auto a: this->legal_actions){
|
212 |
+
CNode* child = this->get_child(a);
|
213 |
+
if(child->visit_count > 0){
|
214 |
+
float true_reward = child->reward;
|
215 |
+
float qsa = true_reward + discount_factor * child->value();
|
216 |
+
total_unsigned_q += qsa;
|
217 |
+
total_visits += 1;
|
218 |
+
}
|
219 |
+
}
|
220 |
+
|
221 |
+
float mean_q = 0.0;
|
222 |
+
if(isRoot && total_visits > 0){
|
223 |
+
mean_q = (total_unsigned_q) / (total_visits);
|
224 |
+
}
|
225 |
+
else{
|
226 |
+
mean_q = (parent_q + total_unsigned_q) / (total_visits + 1);
|
227 |
+
}
|
228 |
+
return mean_q;
|
229 |
+
}
|
230 |
+
|
231 |
+
void CNode::print_out()
|
232 |
+
{
|
233 |
+
return;
|
234 |
+
}
|
235 |
+
|
236 |
+
int CNode::expanded()
|
237 |
+
{
|
238 |
+
/*
|
239 |
+
Overview:
|
240 |
+
Return whether the current node is expanded.
|
241 |
+
*/
|
242 |
+
return this->children.size() > 0;
|
243 |
+
}
|
244 |
+
|
245 |
+
float CNode::value()
|
246 |
+
{
|
247 |
+
/*
|
248 |
+
Overview:
|
249 |
+
Return the real value of the current tree.
|
250 |
+
*/
|
251 |
+
float true_value = 0.0;
|
252 |
+
if (this->visit_count == 0)
|
253 |
+
{
|
254 |
+
return true_value;
|
255 |
+
}
|
256 |
+
else
|
257 |
+
{
|
258 |
+
true_value = this->value_sum / this->visit_count;
|
259 |
+
return true_value;
|
260 |
+
}
|
261 |
+
}
|
262 |
+
|
263 |
+
std::vector<int> CNode::get_trajectory()
|
264 |
+
{
|
265 |
+
/*
|
266 |
+
Overview:
|
267 |
+
Find the current best trajectory starts from the current node.
|
268 |
+
Outputs:
|
269 |
+
- traj: a vector of node index, which is the current best trajectory from this node.
|
270 |
+
*/
|
271 |
+
std::vector<int> traj;
|
272 |
+
|
273 |
+
CNode *node = this;
|
274 |
+
int best_action = node->best_action;
|
275 |
+
while (best_action >= 0)
|
276 |
+
{
|
277 |
+
traj.push_back(best_action);
|
278 |
+
|
279 |
+
node = node->get_child(best_action);
|
280 |
+
best_action = node->best_action;
|
281 |
+
}
|
282 |
+
return traj;
|
283 |
+
}
|
284 |
+
|
285 |
+
std::vector<int> CNode::get_children_distribution()
|
286 |
+
{
|
287 |
+
/*
|
288 |
+
Overview:
|
289 |
+
Get the distribution of child nodes in the format of visit_count.
|
290 |
+
Outputs:
|
291 |
+
- distribution: a vector of distribution of child nodes in the format of visit count (i.e. [1,3,0,2,5]).
|
292 |
+
*/
|
293 |
+
std::vector<int> distribution;
|
294 |
+
if (this->expanded())
|
295 |
+
{
|
296 |
+
for (auto a : this->legal_actions)
|
297 |
+
{
|
298 |
+
CNode *child = this->get_child(a);
|
299 |
+
distribution.push_back(child->visit_count);
|
300 |
+
}
|
301 |
+
}
|
302 |
+
return distribution;
|
303 |
+
}
|
304 |
+
|
305 |
+
//*********************************************************
|
306 |
+
// Gumbel Muzero related code
|
307 |
+
//*********************************************************
|
308 |
+
|
309 |
+
std::vector<float> CNode::get_children_value(float discount_factor, int action_space_size)
|
310 |
+
{
|
311 |
+
/*
|
312 |
+
Overview:
|
313 |
+
Get the completed value of child nodes.
|
314 |
+
Outputs:
|
315 |
+
- discount_factor: the discount_factor of reward.
|
316 |
+
- action_space_size: the size of action space.
|
317 |
+
*/
|
318 |
+
float infymin = -std::numeric_limits<float>::infinity();
|
319 |
+
std::vector<int> child_visit_count;
|
320 |
+
std::vector<float> child_prior;
|
321 |
+
for(auto a: this->legal_actions){
|
322 |
+
CNode* child = this->get_child(a);
|
323 |
+
child_visit_count.push_back(child->visit_count);
|
324 |
+
child_prior.push_back(child->prior);
|
325 |
+
}
|
326 |
+
assert(child_visit_count.size()==child_prior.size());
|
327 |
+
// compute the completed value
|
328 |
+
std::vector<float> completed_qvalues = qtransform_completed_by_mix_value(this, child_visit_count, child_prior, discount_factor);
|
329 |
+
std::vector<float> values;
|
330 |
+
for (int i=0;i<action_space_size;i++){
|
331 |
+
values.push_back(infymin);
|
332 |
+
}
|
333 |
+
for (int i=0;i<child_prior.size();i++){
|
334 |
+
values[this->legal_actions[i]] = completed_qvalues[i];
|
335 |
+
}
|
336 |
+
|
337 |
+
return values;
|
338 |
+
}
|
339 |
+
|
340 |
+
CNode *CNode::get_child(int action)
|
341 |
+
{
|
342 |
+
/*
|
343 |
+
Overview:
|
344 |
+
Get the child node corresponding to the input action.
|
345 |
+
Arguments:
|
346 |
+
- action: the action to get child.
|
347 |
+
*/
|
348 |
+
return &(this->children[action]);
|
349 |
+
}
|
350 |
+
|
351 |
+
//*********************************************************
|
352 |
+
// Gumbel Muzero related code
|
353 |
+
//*********************************************************
|
354 |
+
|
355 |
+
std::vector<float> CNode::get_policy(float discount_factor, int action_space_size){
|
356 |
+
/*
|
357 |
+
Overview:
|
358 |
+
Compute the improved policy of the current node.
|
359 |
+
Arguments:
|
360 |
+
- discount_factor: the discount_factor of reward.
|
361 |
+
- action_space_size: the action space size of environment.
|
362 |
+
*/
|
363 |
+
float infymin = -std::numeric_limits<float>::infinity();
|
364 |
+
std::vector<int> child_visit_count;
|
365 |
+
std::vector<float> child_prior;
|
366 |
+
for(auto a: this->legal_actions){
|
367 |
+
CNode* child = this->get_child(a);
|
368 |
+
child_visit_count.push_back(child->visit_count);
|
369 |
+
child_prior.push_back(child->prior);
|
370 |
+
}
|
371 |
+
assert(child_visit_count.size()==child_prior.size());
|
372 |
+
// compute the completed value
|
373 |
+
std::vector<float> completed_qvalues = qtransform_completed_by_mix_value(this, child_visit_count, child_prior, discount_factor);
|
374 |
+
std::vector<float> probs;
|
375 |
+
for (int i=0;i<action_space_size;i++){
|
376 |
+
probs.push_back(infymin);
|
377 |
+
}
|
378 |
+
for (int i=0;i<child_prior.size();i++){
|
379 |
+
probs[this->legal_actions[i]] = child_prior[i] + completed_qvalues[i];
|
380 |
+
}
|
381 |
+
|
382 |
+
csoftmax(probs, probs.size());
|
383 |
+
|
384 |
+
return probs;
|
385 |
+
}
|
386 |
+
|
387 |
+
//*********************************************************
|
388 |
+
|
389 |
+
CRoots::CRoots()
|
390 |
+
{
|
391 |
+
/*
|
392 |
+
Overview:
|
393 |
+
The initialization of CRoots.
|
394 |
+
*/
|
395 |
+
this->root_num = 0;
|
396 |
+
}
|
397 |
+
|
398 |
+
CRoots::CRoots(int root_num, std::vector<std::vector<int> > &legal_actions_list)
|
399 |
+
{
|
400 |
+
/*
|
401 |
+
Overview:
|
402 |
+
The initialization of CRoots with root num and legal action lists.
|
403 |
+
Arguments:
|
404 |
+
- root_num: the number of the current root.
|
405 |
+
- legal_action_list: the vector of the legal action of this root.
|
406 |
+
*/
|
407 |
+
this->root_num = root_num;
|
408 |
+
this->legal_actions_list = legal_actions_list;
|
409 |
+
|
410 |
+
for (int i = 0; i < root_num; ++i)
|
411 |
+
{
|
412 |
+
this->roots.push_back(CNode(0, this->legal_actions_list[i]));
|
413 |
+
}
|
414 |
+
}
|
415 |
+
|
416 |
+
CRoots::~CRoots() {}
|
417 |
+
|
418 |
+
void CRoots::prepare(float root_noise_weight, const std::vector<std::vector<float> > &noises, const std::vector<float> &rewards, const std::vector<float> &values, const std::vector<std::vector<float> > &policies, std::vector<int> &to_play_batch)
|
419 |
+
{
|
420 |
+
/*
|
421 |
+
Overview:
|
422 |
+
Expand the roots and add noises.
|
423 |
+
Arguments:
|
424 |
+
- root_noise_weight: the exploration fraction of roots.
|
425 |
+
- noises: the vector of noise add to the roots.
|
426 |
+
- rewards: the vector of rewards of each root.
|
427 |
+
- values: the vector of values of each root.
|
428 |
+
- policies: the vector of policy logits of each root.
|
429 |
+
- to_play_batch: the vector of the player side of each root.
|
430 |
+
*/
|
431 |
+
for(int i = 0; i < this->root_num; ++i){
|
432 |
+
this->roots[i].expand(to_play_batch[i], 0, i, rewards[i], values[i], policies[i]);
|
433 |
+
this->roots[i].add_exploration_noise(root_noise_weight, noises[i]);
|
434 |
+
|
435 |
+
this->roots[i].visit_count += 1;
|
436 |
+
}
|
437 |
+
}
|
438 |
+
|
439 |
+
void CRoots::prepare_no_noise(const std::vector<float> &rewards, const std::vector<float> &values, const std::vector<std::vector<float> > &policies, std::vector<int> &to_play_batch)
|
440 |
+
{
|
441 |
+
/*
|
442 |
+
Overview:
|
443 |
+
Expand the roots without noise.
|
444 |
+
Arguments:
|
445 |
+
- rewards: the vector of rewards of each root.
|
446 |
+
- values: the vector of values of each root.
|
447 |
+
- policies: the vector of policy logits of each root.
|
448 |
+
- to_play_batch: the vector of the player side of each root.
|
449 |
+
*/
|
450 |
+
for(int i = 0; i < this->root_num; ++i){
|
451 |
+
this->roots[i].expand(to_play_batch[i], 0, i, rewards[i], values[i], policies[i]);
|
452 |
+
|
453 |
+
this->roots[i].visit_count += 1;
|
454 |
+
}
|
455 |
+
}
|
456 |
+
|
457 |
+
void CRoots::clear()
|
458 |
+
{
|
459 |
+
/*
|
460 |
+
Overview:
|
461 |
+
Clear the roots vector.
|
462 |
+
*/
|
463 |
+
this->roots.clear();
|
464 |
+
}
|
465 |
+
|
466 |
+
std::vector<std::vector<int> > CRoots::get_trajectories()
|
467 |
+
{
|
468 |
+
/*
|
469 |
+
Overview:
|
470 |
+
Find the current best trajectory starts from each root.
|
471 |
+
Outputs:
|
472 |
+
- traj: a vector of node index, which is the current best trajectory from each root.
|
473 |
+
*/
|
474 |
+
std::vector<std::vector<int> > trajs;
|
475 |
+
trajs.reserve(this->root_num);
|
476 |
+
|
477 |
+
for (int i = 0; i < this->root_num; ++i)
|
478 |
+
{
|
479 |
+
trajs.push_back(this->roots[i].get_trajectory());
|
480 |
+
}
|
481 |
+
return trajs;
|
482 |
+
}
|
483 |
+
|
484 |
+
std::vector<std::vector<int> > CRoots::get_distributions()
|
485 |
+
{
|
486 |
+
/*
|
487 |
+
Overview:
|
488 |
+
Get the children distribution of each root.
|
489 |
+
Outputs:
|
490 |
+
- distribution: a vector of distribution of child nodes in the format of visit count (i.e. [1,3,0,2,5]).
|
491 |
+
*/
|
492 |
+
std::vector<std::vector<int> > distributions;
|
493 |
+
distributions.reserve(this->root_num);
|
494 |
+
|
495 |
+
for (int i = 0; i < this->root_num; ++i)
|
496 |
+
{
|
497 |
+
distributions.push_back(this->roots[i].get_children_distribution());
|
498 |
+
}
|
499 |
+
return distributions;
|
500 |
+
}
|
501 |
+
|
502 |
+
//*********************************************************
|
503 |
+
// Gumbel Muzero related code
|
504 |
+
//*********************************************************
|
505 |
+
|
506 |
+
std::vector<std::vector<float> > CRoots::get_children_values(float discount_factor, int action_space_size)
|
507 |
+
{
|
508 |
+
/*
|
509 |
+
Overview:
|
510 |
+
Compute the completed value of each root.
|
511 |
+
Arguments:
|
512 |
+
- discount_factor: the discount_factor of reward.
|
513 |
+
- action_space_size: the action space size of environment.
|
514 |
+
*/
|
515 |
+
std::vector<std::vector<float> > values;
|
516 |
+
values.reserve(this->root_num);
|
517 |
+
|
518 |
+
for (int i = 0; i < this->root_num; ++i)
|
519 |
+
{
|
520 |
+
values.push_back(this->roots[i].get_children_value(discount_factor, action_space_size));
|
521 |
+
}
|
522 |
+
return values;
|
523 |
+
}
|
524 |
+
|
525 |
+
std::vector<std::vector<float> > CRoots::get_policies(float discount_factor, int action_space_size)
|
526 |
+
{
|
527 |
+
/*
|
528 |
+
Overview:
|
529 |
+
Compute the improved policy of each root.
|
530 |
+
Arguments:
|
531 |
+
- discount_factor: the discount_factor of reward.
|
532 |
+
- action_space_size: the action space size of environment.
|
533 |
+
*/
|
534 |
+
std::vector<std::vector<float> > probs;
|
535 |
+
probs.reserve(this->root_num);
|
536 |
+
|
537 |
+
for(int i = 0; i < this->root_num; ++i){
|
538 |
+
probs.push_back(this->roots[i].get_policy(discount_factor, action_space_size));
|
539 |
+
}
|
540 |
+
return probs;
|
541 |
+
}
|
542 |
+
|
543 |
+
std::vector<float> CRoots::get_values()
|
544 |
+
{
|
545 |
+
/*
|
546 |
+
Overview:
|
547 |
+
Return the real value of each root.
|
548 |
+
*/
|
549 |
+
std::vector<float> values;
|
550 |
+
for (int i = 0; i < this->root_num; ++i)
|
551 |
+
{
|
552 |
+
values.push_back(this->roots[i].value());
|
553 |
+
}
|
554 |
+
return values;
|
555 |
+
}
|
556 |
+
|
557 |
+
//*********************************************************
|
558 |
+
//
|
559 |
+
void update_tree_q(CNode* root, tools::CMinMaxStats &min_max_stats, float discount_factor, int players)
|
560 |
+
{
|
561 |
+
/*
|
562 |
+
Overview:
|
563 |
+
Update the q value of the root and its child nodes.
|
564 |
+
Arguments:
|
565 |
+
- root: the root that update q value from.
|
566 |
+
- min_max_stats: a tool used to min-max normalize the q value.
|
567 |
+
- discount_factor: the discount factor of reward.
|
568 |
+
- players: the number of players.
|
569 |
+
*/
|
570 |
+
std::stack<CNode*> node_stack;
|
571 |
+
node_stack.push(root);
|
572 |
+
// float parent_value_prefix = 0.0;
|
573 |
+
while(node_stack.size() > 0){
|
574 |
+
CNode* node = node_stack.top();
|
575 |
+
node_stack.pop();
|
576 |
+
|
577 |
+
if(node != root){
|
578 |
+
// # NOTE: in 2 player mode, value_prefix is not calculated according to the perspective of current player of node,
|
579 |
+
// # but treated as 1 player, just for obtaining the true reward in the perspective of current player of node.
|
580 |
+
// # true_reward = node.value_prefix - (- parent_value_prefix)
|
581 |
+
// float true_reward = node->value_prefix - node->parent_value_prefix;
|
582 |
+
float true_reward = node->reward;
|
583 |
+
|
584 |
+
float qsa;
|
585 |
+
if(players == 1)
|
586 |
+
qsa = true_reward + discount_factor * node->value();
|
587 |
+
else if(players == 2)
|
588 |
+
// TODO(pu):
|
589 |
+
qsa = true_reward + discount_factor * (-1) * node->value();
|
590 |
+
|
591 |
+
min_max_stats.update(qsa);
|
592 |
+
}
|
593 |
+
|
594 |
+
for(auto a: node->legal_actions){
|
595 |
+
CNode* child = node->get_child(a);
|
596 |
+
if(child->expanded()){
|
597 |
+
// child->parent_value_prefix = node->value_prefix;
|
598 |
+
node_stack.push(child);
|
599 |
+
}
|
600 |
+
}
|
601 |
+
|
602 |
+
}
|
603 |
+
}
|
604 |
+
|
605 |
+
void cback_propagate(std::vector<CNode*> &search_path, tools::CMinMaxStats &min_max_stats, int to_play, float value, float discount_factor)
|
606 |
+
{
|
607 |
+
/*
|
608 |
+
Overview:
|
609 |
+
Update the value sum and visit count of nodes along the search path.
|
610 |
+
Arguments:
|
611 |
+
- search_path: a vector of nodes on the search path.
|
612 |
+
- min_max_stats: a tool used to min-max normalize the q value.
|
613 |
+
- to_play: which player to play the game in the current node.
|
614 |
+
- value: the value to propagate along the search path.
|
615 |
+
- discount_factor: the discount factor of reward.
|
616 |
+
*/
|
617 |
+
assert(to_play == -1);
|
618 |
+
float bootstrap_value = value;
|
619 |
+
int path_len = search_path.size();
|
620 |
+
for(int i = path_len - 1; i >= 0; --i){
|
621 |
+
CNode* node = search_path[i];
|
622 |
+
node->value_sum += bootstrap_value;
|
623 |
+
node->visit_count += 1;
|
624 |
+
|
625 |
+
float true_reward = node->reward;
|
626 |
+
|
627 |
+
min_max_stats.update(true_reward + discount_factor * node->value());
|
628 |
+
|
629 |
+
bootstrap_value = true_reward + discount_factor * bootstrap_value;
|
630 |
+
}
|
631 |
+
}
|
632 |
+
|
633 |
+
void cbatch_back_propagate(int current_latent_state_index, float discount_factor, const std::vector<float> &value_prefixs, const std::vector<float> &values, const std::vector<std::vector<float> > &policies, tools::CMinMaxStatsList *min_max_stats_lst, CSearchResults &results, std::vector<int> &to_play_batch)
|
634 |
+
{
|
635 |
+
/*
|
636 |
+
Overview:
|
637 |
+
Expand the nodes along the search path and update the infos.
|
638 |
+
Arguments:
|
639 |
+
- current_latent_state_index: The index of latent state of the leaf node in the search path.
|
640 |
+
- discount_factor: the discount factor of reward.
|
641 |
+
- value_prefixs: the value prefixs of nodes along the search path.
|
642 |
+
- values: the values to propagate along the search path.
|
643 |
+
- policies: the policy logits of nodes along the search path.
|
644 |
+
- min_max_stats: a tool used to min-max normalize the q value.
|
645 |
+
- results: the search results.
|
646 |
+
- to_play_batch: the batch of which player is playing on this node.
|
647 |
+
*/
|
648 |
+
for(int i = 0; i < results.num; ++i){
|
649 |
+
results.nodes[i]->expand(to_play_batch[i], current_latent_state_index, i, value_prefixs[i], values[i], policies[i]);
|
650 |
+
cback_propagate(results.search_paths[i], min_max_stats_lst->stats_lst[i], to_play_batch[i], values[i], discount_factor);
|
651 |
+
}
|
652 |
+
}
|
653 |
+
|
654 |
+
int cselect_child(CNode* root, tools::CMinMaxStats &min_max_stats, int pb_c_base, float pb_c_init, float discount_factor, float mean_q, int players)
|
655 |
+
{
|
656 |
+
/*
|
657 |
+
Overview:
|
658 |
+
Select the child node of the roots according to ucb scores.
|
659 |
+
Arguments:
|
660 |
+
- root: the roots to select the child node.
|
661 |
+
- min_max_stats: a tool used to min-max normalize the score.
|
662 |
+
- pb_c_base: constants c2 in muzero.
|
663 |
+
- pb_c_init: constants c1 in muzero.
|
664 |
+
- disount_factor: the discount factor of reward.
|
665 |
+
- mean_q: the mean q value of the parent node.
|
666 |
+
- players: the number of players.
|
667 |
+
Outputs:
|
668 |
+
- action: the action to select.
|
669 |
+
*/
|
670 |
+
float max_score = FLOAT_MIN;
|
671 |
+
const float epsilon = 0.000001;
|
672 |
+
std::vector<int> max_index_lst;
|
673 |
+
for(auto a: root->legal_actions){
|
674 |
+
|
675 |
+
CNode* child = root->get_child(a);
|
676 |
+
float temp_score = cucb_score(child, min_max_stats, mean_q, root->visit_count - 1, pb_c_base, pb_c_init, discount_factor, players);
|
677 |
+
|
678 |
+
if(max_score < temp_score){
|
679 |
+
max_score = temp_score;
|
680 |
+
|
681 |
+
max_index_lst.clear();
|
682 |
+
max_index_lst.push_back(a);
|
683 |
+
}
|
684 |
+
else if(temp_score >= max_score - epsilon){
|
685 |
+
max_index_lst.push_back(a);
|
686 |
+
}
|
687 |
+
}
|
688 |
+
|
689 |
+
int action = 0;
|
690 |
+
if(max_index_lst.size() > 0){
|
691 |
+
int rand_index = rand() % max_index_lst.size();
|
692 |
+
action = max_index_lst[rand_index];
|
693 |
+
}
|
694 |
+
return action;
|
695 |
+
}
|
696 |
+
|
697 |
+
//*********************************************************
|
698 |
+
// Gumbel Muzero related code
|
699 |
+
//*********************************************************
|
700 |
+
|
701 |
+
int cselect_root_child(CNode* root, float discount_factor, int num_simulations, int max_num_considered_actions)
|
702 |
+
{
|
703 |
+
/*
|
704 |
+
Overview:
|
705 |
+
Select the child node of the roots in gumbel muzero.
|
706 |
+
Arguments:
|
707 |
+
- root: the roots to select the child node.
|
708 |
+
- disount_factor: the discount factor of reward.
|
709 |
+
- num_simulations: the upper limit number of simulations.
|
710 |
+
- max_num_considered_actions: the maximum number of considered actions.
|
711 |
+
Outputs:
|
712 |
+
- action: the action to select.
|
713 |
+
*/
|
714 |
+
std::vector<int> child_visit_count;
|
715 |
+
std::vector<float> child_prior;
|
716 |
+
for(auto a: root->legal_actions){
|
717 |
+
CNode* child = root->get_child(a);
|
718 |
+
child_visit_count.push_back(child->visit_count);
|
719 |
+
child_prior.push_back(child->prior);
|
720 |
+
}
|
721 |
+
assert(child_visit_count.size()==child_prior.size());
|
722 |
+
|
723 |
+
std::vector<float> completed_qvalues = qtransform_completed_by_mix_value(root, child_visit_count, child_prior, discount_factor);
|
724 |
+
std::vector<std::vector<int> > visit_table = get_table_of_considered_visits(max_num_considered_actions, num_simulations);
|
725 |
+
|
726 |
+
int num_valid_actions = root->legal_actions.size();
|
727 |
+
int num_considered = std::min(max_num_considered_actions, num_simulations);
|
728 |
+
int simulation_index = std::accumulate(child_visit_count.begin(), child_visit_count.end(), 0);
|
729 |
+
int considered_visit = visit_table[num_considered][simulation_index];
|
730 |
+
|
731 |
+
std::vector<float> score = score_considered(considered_visit, root->gumbel, child_prior, completed_qvalues, child_visit_count);
|
732 |
+
|
733 |
+
float argmax = -std::numeric_limits<float>::infinity();
|
734 |
+
int max_action = root->legal_actions[0];
|
735 |
+
int index = 0;
|
736 |
+
for(auto a: root->legal_actions){
|
737 |
+
if(score[index] > argmax){
|
738 |
+
argmax = score[index];
|
739 |
+
max_action = a;
|
740 |
+
}
|
741 |
+
index += 1;
|
742 |
+
}
|
743 |
+
|
744 |
+
return max_action;
|
745 |
+
}
|
746 |
+
|
747 |
+
int cselect_interior_child(CNode* root, float discount_factor)
|
748 |
+
{
|
749 |
+
/*
|
750 |
+
Overview:
|
751 |
+
Select the child node of the interior node in gumbel muzero.
|
752 |
+
Arguments:
|
753 |
+
- root: the roots to select the child node.
|
754 |
+
- disount_factor: the discount factor of reward.
|
755 |
+
Outputs:
|
756 |
+
- action: the action to select.
|
757 |
+
*/
|
758 |
+
std::vector<int> child_visit_count;
|
759 |
+
std::vector<float> child_prior;
|
760 |
+
for(auto a: root->legal_actions){
|
761 |
+
CNode* child = root->get_child(a);
|
762 |
+
child_visit_count.push_back(child->visit_count);
|
763 |
+
child_prior.push_back(child->prior);
|
764 |
+
}
|
765 |
+
assert(child_visit_count.size()==child_prior.size());
|
766 |
+
std::vector<float> completed_qvalues = qtransform_completed_by_mix_value(root, child_visit_count, child_prior, discount_factor);
|
767 |
+
std::vector<float> probs;
|
768 |
+
for (int i=0;i<child_prior.size();i++){
|
769 |
+
probs.push_back(child_prior[i] + completed_qvalues[i]);
|
770 |
+
}
|
771 |
+
csoftmax(probs, probs.size());
|
772 |
+
int visit_count_sum = std::accumulate(child_visit_count.begin(), child_visit_count.end(), 0);
|
773 |
+
std::vector<float> to_argmax;
|
774 |
+
for (int i=0;i<probs.size();i++){
|
775 |
+
to_argmax.push_back(probs[i] - (float)child_visit_count[i]/(float)(1+visit_count_sum));
|
776 |
+
}
|
777 |
+
|
778 |
+
float argmax = -std::numeric_limits<float>::infinity();
|
779 |
+
int max_action = root->legal_actions[0];
|
780 |
+
int index = 0;
|
781 |
+
for(auto a: root->legal_actions){
|
782 |
+
if(to_argmax[index] > argmax){
|
783 |
+
argmax = to_argmax[index];
|
784 |
+
max_action = a;
|
785 |
+
}
|
786 |
+
index += 1;
|
787 |
+
}
|
788 |
+
|
789 |
+
return max_action;
|
790 |
+
}
|
791 |
+
|
792 |
+
float cucb_score(CNode *child, tools::CMinMaxStats &min_max_stats, float parent_mean_q, float total_children_visit_counts, float pb_c_base, float pb_c_init, float discount_factor, int players)
|
793 |
+
{
|
794 |
+
/*
|
795 |
+
Overview:
|
796 |
+
Compute the ucb score of the child.
|
797 |
+
Arguments:
|
798 |
+
- child: the child node to compute ucb score.
|
799 |
+
- min_max_stats: a tool used to min-max normalize the score.
|
800 |
+
- mean_q: the mean q value of the parent node.
|
801 |
+
- total_children_visit_counts: the total visit counts of the child nodes of the parent node.
|
802 |
+
- pb_c_base: constants c2 in muzero.
|
803 |
+
- pb_c_init: constants c1 in muzero.
|
804 |
+
- disount_factor: the discount factor of reward.
|
805 |
+
- players: the number of players.
|
806 |
+
Outputs:
|
807 |
+
- ucb_value: the ucb score of the child.
|
808 |
+
*/
|
809 |
+
float pb_c = 0.0, prior_score = 0.0, value_score = 0.0;
|
810 |
+
pb_c = log((total_children_visit_counts + pb_c_base + 1) / pb_c_base) + pb_c_init;
|
811 |
+
pb_c *= (sqrt(total_children_visit_counts) / (child->visit_count + 1));
|
812 |
+
|
813 |
+
prior_score = pb_c * child->prior;
|
814 |
+
if (child->visit_count == 0){
|
815 |
+
value_score = parent_mean_q;
|
816 |
+
}
|
817 |
+
else {
|
818 |
+
float true_reward = child->reward;
|
819 |
+
if(players == 1)
|
820 |
+
value_score = true_reward + discount_factor * child->value();
|
821 |
+
else if(players == 2)
|
822 |
+
value_score = true_reward + discount_factor * (-child->value());
|
823 |
+
}
|
824 |
+
|
825 |
+
value_score = min_max_stats.normalize(value_score);
|
826 |
+
|
827 |
+
if (value_score < 0) value_score = 0;
|
828 |
+
if (value_score > 1) value_score = 1;
|
829 |
+
|
830 |
+
float ucb_value = prior_score + value_score;
|
831 |
+
return ucb_value;
|
832 |
+
}
|
833 |
+
|
834 |
+
void cbatch_traverse(CRoots *roots, int num_simulations, int max_num_considered_actions, float discount_factor, CSearchResults &results, std::vector<int> &virtual_to_play_batch)
|
835 |
+
{
|
836 |
+
/*
|
837 |
+
Overview:
|
838 |
+
Search node path from the roots.
|
839 |
+
Arguments:
|
840 |
+
- roots: the roots that search from.
|
841 |
+
- num_simulations: the upper limit number of simulations.
|
842 |
+
- max_num_considered_actions: the maximum number of considered actions.
|
843 |
+
- disount_factor: the discount factor of reward.
|
844 |
+
- results: the search results.
|
845 |
+
- virtual_to_play_batch: the batch of which player is playing on this node.
|
846 |
+
*/
|
847 |
+
// set seed
|
848 |
+
timeval t1;
|
849 |
+
gettimeofday(&t1, NULL);
|
850 |
+
srand(t1.tv_usec);
|
851 |
+
|
852 |
+
int last_action = -1;
|
853 |
+
float parent_q = 0.0;
|
854 |
+
results.search_lens = std::vector<int>();
|
855 |
+
|
856 |
+
int players = 0;
|
857 |
+
int largest_element = *max_element(virtual_to_play_batch.begin(),virtual_to_play_batch.end()); // 0 or 2
|
858 |
+
if(largest_element==-1)
|
859 |
+
players = 1;
|
860 |
+
else
|
861 |
+
players = 2;
|
862 |
+
|
863 |
+
for(int i = 0; i < results.num; ++i){
|
864 |
+
CNode *node = &(roots->roots[i]);
|
865 |
+
int is_root = 1;
|
866 |
+
int search_len = 0;
|
867 |
+
int action = 0;
|
868 |
+
results.search_paths[i].push_back(node);
|
869 |
+
|
870 |
+
while(node->expanded()){
|
871 |
+
if(is_root){
|
872 |
+
action = cselect_root_child(node, discount_factor, num_simulations, max_num_considered_actions);
|
873 |
+
}
|
874 |
+
else{
|
875 |
+
action = cselect_interior_child(node, discount_factor);
|
876 |
+
}
|
877 |
+
is_root = 0;
|
878 |
+
|
879 |
+
node->best_action = action;
|
880 |
+
// next
|
881 |
+
node = node->get_child(action);
|
882 |
+
last_action = action;
|
883 |
+
results.search_paths[i].push_back(node);
|
884 |
+
search_len += 1;
|
885 |
+
}
|
886 |
+
|
887 |
+
CNode* parent = results.search_paths[i][results.search_paths[i].size() - 2];
|
888 |
+
|
889 |
+
results.latent_state_index_in_search_path.push_back(parent->current_latent_state_index);
|
890 |
+
results.latent_state_index_in_batch.push_back(parent->batch_index);
|
891 |
+
|
892 |
+
results.last_actions.push_back(last_action);
|
893 |
+
results.search_lens.push_back(search_len);
|
894 |
+
results.nodes.push_back(node);
|
895 |
+
results.virtual_to_play_batchs.push_back(virtual_to_play_batch[i]);
|
896 |
+
|
897 |
+
}
|
898 |
+
}
|
899 |
+
|
900 |
+
//*********************************************************
|
901 |
+
// Gumbel Muzero related code
|
902 |
+
//*********************************************************
|
903 |
+
|
904 |
+
void csoftmax(std::vector<float> &input, int input_len)
|
905 |
+
{
|
906 |
+
/*
|
907 |
+
Overview:
|
908 |
+
Softmax transformation.
|
909 |
+
Arguments:
|
910 |
+
- input: the vector to be transformed.
|
911 |
+
- input_len: the length of input vector.
|
912 |
+
*/
|
913 |
+
assert (input != NULL);
|
914 |
+
assert (input_len != 0);
|
915 |
+
int i;
|
916 |
+
float m;
|
917 |
+
// Find maximum value from input array
|
918 |
+
m = input[0];
|
919 |
+
for (i = 1; i < input_len; i++) {
|
920 |
+
if (input[i] > m) {
|
921 |
+
m = input[i];
|
922 |
+
}
|
923 |
+
}
|
924 |
+
|
925 |
+
float sum = 0;
|
926 |
+
for (i = 0; i < input_len; i++) {
|
927 |
+
sum += expf(input[i]-m);
|
928 |
+
}
|
929 |
+
|
930 |
+
for (i = 0; i < input_len; i++) {
|
931 |
+
input[i] = expf(input[i] - m - log(sum));
|
932 |
+
}
|
933 |
+
}
|
934 |
+
|
935 |
+
float compute_mixed_value(float raw_value, std::vector<float> q_values, std::vector<int> &child_visit, std::vector<float> &child_prior)
|
936 |
+
{
|
937 |
+
/*
|
938 |
+
Overview:
|
939 |
+
Compute the mixed Q value.
|
940 |
+
Arguments:
|
941 |
+
- raw_value: the approximated value of the current node from the value network.
|
942 |
+
- q_value: the q value of the current node.
|
943 |
+
- child_visit: the visit counts of the child nodes.
|
944 |
+
- child_prior: the prior of the child nodes.
|
945 |
+
Outputs:
|
946 |
+
- mixed Q value.
|
947 |
+
*/
|
948 |
+
float visit_count_sum = 0.0;
|
949 |
+
float probs_sum = 0.0;
|
950 |
+
float weighted_q_sum = 0.0;
|
951 |
+
float min_num = -10e7;
|
952 |
+
|
953 |
+
for(unsigned int i = 0;i < child_visit.size();i++)
|
954 |
+
visit_count_sum += child_visit[i];
|
955 |
+
|
956 |
+
for(unsigned int i = 0;i < child_prior.size();i++)
|
957 |
+
// Ensuring non-nan prior
|
958 |
+
child_prior[i] = std::max(child_prior[i], min_num);
|
959 |
+
|
960 |
+
for(unsigned int i = 0;i < child_prior.size();i++)
|
961 |
+
if (child_visit[i] > 0)
|
962 |
+
probs_sum += child_prior[i];
|
963 |
+
|
964 |
+
for (unsigned int i = 0;i < child_prior.size();i++)
|
965 |
+
if (child_visit[i] > 0){
|
966 |
+
weighted_q_sum += child_prior[i] * q_values[i] / probs_sum;
|
967 |
+
}
|
968 |
+
|
969 |
+
return (raw_value + visit_count_sum * weighted_q_sum) / (visit_count_sum+1);
|
970 |
+
}
|
971 |
+
|
972 |
+
void rescale_qvalues(std::vector<float> &value, float epsilon){
|
973 |
+
/*
|
974 |
+
Overview:
|
975 |
+
Rescale the q value with max-min normalization.
|
976 |
+
Arguments:
|
977 |
+
- value: the value vector to be rescaled.
|
978 |
+
- epsilon: the lower limit of gap.
|
979 |
+
*/
|
980 |
+
float max_value = *max_element(value.begin(), value.end());
|
981 |
+
float min_value = *min_element(value.begin(), value.end());
|
982 |
+
float gap = max_value - min_value;
|
983 |
+
gap = std::max(gap, epsilon);
|
984 |
+
for (unsigned int i = 0;i < value.size();i++){
|
985 |
+
value[i] = (value[i]-min_value)/gap;
|
986 |
+
}
|
987 |
+
}
|
988 |
+
|
989 |
+
std::vector<float> qtransform_completed_by_mix_value(CNode *root, std::vector<int> & child_visit, \
|
990 |
+
std::vector<float> & child_prior, float discount_factor, float maxvisit_init, float value_scale, \
|
991 |
+
bool rescale_values, float epsilon)
|
992 |
+
{
|
993 |
+
/*
|
994 |
+
Overview:
|
995 |
+
Calculate the q value with mixed value.
|
996 |
+
Arguments:
|
997 |
+
- root: the roots that search from.
|
998 |
+
- child_visit: the visit counts of the child nodes.
|
999 |
+
- child_prior: the prior of the child nodes.
|
1000 |
+
- discount_factor: the discount factor of reward.
|
1001 |
+
- maxvisit_init: the init of the maximization of visit counts.
|
1002 |
+
- value_cale: the scale of value.
|
1003 |
+
- rescale_values: whether to rescale the values.
|
1004 |
+
- epsilon: the lower limit of gap in max-min normalization
|
1005 |
+
Outputs:
|
1006 |
+
- completed Q value.
|
1007 |
+
*/
|
1008 |
+
assert (child_visit.size() == child_prior.size());
|
1009 |
+
std::vector<float> qvalues;
|
1010 |
+
std::vector<float> child_prior_tmp;
|
1011 |
+
|
1012 |
+
child_prior_tmp.assign(child_prior.begin(), child_prior.end());
|
1013 |
+
qvalues = root->get_q(discount_factor);
|
1014 |
+
csoftmax(child_prior_tmp, child_prior_tmp.size());
|
1015 |
+
// TODO: should be raw_value here
|
1016 |
+
float value = compute_mixed_value(root->raw_value, qvalues, child_visit, child_prior_tmp);
|
1017 |
+
std::vector<float> completed_qvalue;
|
1018 |
+
|
1019 |
+
for (unsigned int i = 0;i < child_prior_tmp.size();i++){
|
1020 |
+
if (child_visit[i] > 0){
|
1021 |
+
completed_qvalue.push_back(qvalues[i]);
|
1022 |
+
}
|
1023 |
+
else{
|
1024 |
+
completed_qvalue.push_back(value);
|
1025 |
+
}
|
1026 |
+
}
|
1027 |
+
|
1028 |
+
if (rescale_values){
|
1029 |
+
rescale_qvalues(completed_qvalue, epsilon);
|
1030 |
+
}
|
1031 |
+
|
1032 |
+
float max_visit = *max_element(child_visit.begin(), child_visit.end());
|
1033 |
+
float visit_scale = maxvisit_init + max_visit;
|
1034 |
+
|
1035 |
+
for (unsigned int i=0;i < completed_qvalue.size();i++){
|
1036 |
+
completed_qvalue[i] = completed_qvalue[i] * visit_scale * value_scale;
|
1037 |
+
}
|
1038 |
+
return completed_qvalue;
|
1039 |
+
|
1040 |
+
}
|
1041 |
+
|
1042 |
+
std::vector<int> get_sequence_of_considered_visits(int max_num_considered_actions, int num_simulations)
|
1043 |
+
{
|
1044 |
+
/*
|
1045 |
+
Overview:
|
1046 |
+
Calculate the considered visit sequence.
|
1047 |
+
Arguments:
|
1048 |
+
- max_num_considered_actions: the maximum number of considered actions.
|
1049 |
+
- num_simulations: the upper limit number of simulations.
|
1050 |
+
Outputs:
|
1051 |
+
- the considered visit sequence.
|
1052 |
+
*/
|
1053 |
+
std::vector<int> visit_seq;
|
1054 |
+
if(max_num_considered_actions <= 1){
|
1055 |
+
for (int i=0;i < num_simulations;i++)
|
1056 |
+
visit_seq.push_back(i);
|
1057 |
+
return visit_seq;
|
1058 |
+
}
|
1059 |
+
|
1060 |
+
int log2max = std::ceil(std::log2(max_num_considered_actions));
|
1061 |
+
std::vector<int> visits;
|
1062 |
+
for (int i = 0;i < max_num_considered_actions;i++)
|
1063 |
+
visits.push_back(0);
|
1064 |
+
int num_considered = max_num_considered_actions;
|
1065 |
+
while (visit_seq.size() < num_simulations){
|
1066 |
+
int num_extra_visits = std::max(1, (int)(num_simulations / (log2max * num_considered)));
|
1067 |
+
for (int i = 0;i < num_extra_visits;i++){
|
1068 |
+
visit_seq.insert(visit_seq.end(), visits.begin(), visits.begin() + num_considered);
|
1069 |
+
for (int j = 0;j < num_considered;j++)
|
1070 |
+
visits[j] += 1;
|
1071 |
+
}
|
1072 |
+
num_considered = std::max(2, num_considered/2);
|
1073 |
+
}
|
1074 |
+
std::vector<int> visit_seq_slice;
|
1075 |
+
visit_seq_slice.assign(visit_seq.begin(), visit_seq.begin() + num_simulations);
|
1076 |
+
return visit_seq_slice;
|
1077 |
+
}
|
1078 |
+
|
1079 |
+
std::vector<std::vector<int> > get_table_of_considered_visits(int max_num_considered_actions, int num_simulations)
|
1080 |
+
{
|
1081 |
+
/*
|
1082 |
+
Overview:
|
1083 |
+
Calculate the table of considered visits.
|
1084 |
+
Arguments:
|
1085 |
+
- max_num_considered_actions: the maximum number of considered actions.
|
1086 |
+
- num_simulations: the upper limit number of simulations.
|
1087 |
+
Outputs:
|
1088 |
+
- the table of considered visits.
|
1089 |
+
*/
|
1090 |
+
std::vector<std::vector<int> > table;
|
1091 |
+
for (int m=0;m < max_num_considered_actions+1;m++){
|
1092 |
+
table.push_back(get_sequence_of_considered_visits(m, num_simulations));
|
1093 |
+
}
|
1094 |
+
return table;
|
1095 |
+
}
|
1096 |
+
|
1097 |
+
std::vector<float> score_considered(int considered_visit, std::vector<float> gumbel, std::vector<float> logits, std::vector<float> normalized_qvalues, std::vector<int> visit_counts)
|
1098 |
+
{
|
1099 |
+
/*
|
1100 |
+
Overview:
|
1101 |
+
Calculate the score of nodes to be considered according to the considered visit.
|
1102 |
+
Arguments:
|
1103 |
+
- considered_visit: the visit counts of node to be considered.
|
1104 |
+
- gumbel: the gumbel vector.
|
1105 |
+
- logits: the logits vector of child nodes.
|
1106 |
+
- normalized_qvalues: the normalized Q values of child nodes.
|
1107 |
+
- visit_counts: the visit counts of child nodes.
|
1108 |
+
Outputs:
|
1109 |
+
- the score of nodes to be considered.
|
1110 |
+
*/
|
1111 |
+
float low_logit = -1e9;
|
1112 |
+
float max_logit = *max_element(logits.begin(), logits.end());
|
1113 |
+
for (unsigned int i=0;i < logits.size();i++){
|
1114 |
+
logits[i] -= max_logit;
|
1115 |
+
}
|
1116 |
+
std::vector<float> penalty;
|
1117 |
+
for (unsigned int i=0;i < visit_counts.size();i++){
|
1118 |
+
// Only consider the nodes with specific visit counts
|
1119 |
+
if (visit_counts[i]==considered_visit)
|
1120 |
+
penalty.push_back(0);
|
1121 |
+
else
|
1122 |
+
penalty.push_back(-std::numeric_limits<float>::infinity());
|
1123 |
+
}
|
1124 |
+
|
1125 |
+
assert(gumbel.size()==logits.size()==normalized_qvalues.size()==penalty.size());
|
1126 |
+
std::vector<float> score;
|
1127 |
+
for (unsigned int i=0;i < visit_counts.size();i++){
|
1128 |
+
score.push_back(std::max(low_logit, gumbel[i] + logits[i] + normalized_qvalues[i]) + penalty[i]);
|
1129 |
+
}
|
1130 |
+
|
1131 |
+
return score;
|
1132 |
+
}
|
1133 |
+
|
1134 |
+
std::vector<float> generate_gumbel(float gumbel_scale, float gumbel_rng, int shape){
|
1135 |
+
/*
|
1136 |
+
Overview:
|
1137 |
+
Generate gumbel vectors.
|
1138 |
+
Arguments:
|
1139 |
+
- gumbel_scale: the scale of gumbel.
|
1140 |
+
- gumbel_rng: the seed to generate gumbel.
|
1141 |
+
- shape: the shape of gumbel vectors to be generated
|
1142 |
+
Outputs:
|
1143 |
+
- gumbel vectors.
|
1144 |
+
*/
|
1145 |
+
std::mt19937 gen(static_cast<unsigned int>(gumbel_rng));
|
1146 |
+
std::extreme_value_distribution<float> d(0, 1);
|
1147 |
+
|
1148 |
+
std::vector<float> gumbel;
|
1149 |
+
for (int i = 0;i < shape;i++)
|
1150 |
+
gumbel.push_back(gumbel_scale * d(gen));
|
1151 |
+
return gumbel;
|
1152 |
+
}
|
1153 |
+
|
1154 |
+
}
|
LightZero/lzero/mcts/ctree/ctree_gumbel_muzero/lib/cnode.h
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// C++11
|
2 |
+
|
3 |
+
#ifndef CNODE_H
|
4 |
+
#define CNODE_H
|
5 |
+
|
6 |
+
#include "./../common_lib/cminimax.h"
|
7 |
+
#include <math.h>
|
8 |
+
#include <vector>
|
9 |
+
#include <stack>
|
10 |
+
#include <stdlib.h>
|
11 |
+
#include <time.h>
|
12 |
+
#include <cmath>
|
13 |
+
#include <sys/timeb.h>
|
14 |
+
#include <sys/time.h>
|
15 |
+
#include <map>
|
16 |
+
|
17 |
+
const int DEBUG_MODE = 0;
|
18 |
+
|
19 |
+
namespace tree {
|
20 |
+
|
21 |
+
class CNode {
|
22 |
+
public:
|
23 |
+
int visit_count, to_play, current_latent_state_index, batch_index, best_action;
|
24 |
+
float reward, prior, value_sum, raw_value, gumbel_scale, gumbel_rng;
|
25 |
+
std::vector<int> children_index;
|
26 |
+
std::map<int, CNode> children;
|
27 |
+
|
28 |
+
std::vector<int> legal_actions;
|
29 |
+
std::vector<float> gumbel;
|
30 |
+
|
31 |
+
CNode();
|
32 |
+
CNode(float prior, std::vector<int> &legal_actions);
|
33 |
+
~CNode();
|
34 |
+
|
35 |
+
void expand(int to_play, int current_latent_state_index, int batch_index, float reward, float value, const std::vector<float> &policy_logits);
|
36 |
+
void add_exploration_noise(float exploration_fraction, const std::vector<float> &noises);
|
37 |
+
std::vector<float> get_q(float discount);
|
38 |
+
float compute_mean_q(int isRoot, float parent_q, float discount);
|
39 |
+
void print_out();
|
40 |
+
|
41 |
+
int expanded();
|
42 |
+
|
43 |
+
float value();
|
44 |
+
|
45 |
+
std::vector<int> get_trajectory();
|
46 |
+
std::vector<int> get_children_distribution();
|
47 |
+
std::vector<float> get_children_value(float discount_factor, int action_space_size);
|
48 |
+
std::vector<float> get_policy(float discount, int action_space_size);
|
49 |
+
CNode* get_child(int action);
|
50 |
+
};
|
51 |
+
|
52 |
+
class CRoots{
|
53 |
+
public:
|
54 |
+
int root_num;
|
55 |
+
std::vector<CNode> roots;
|
56 |
+
std::vector<std::vector<int> > legal_actions_list;
|
57 |
+
|
58 |
+
CRoots();
|
59 |
+
CRoots(int root_num, std::vector<std::vector<int> > &legal_actions_list);
|
60 |
+
~CRoots();
|
61 |
+
|
62 |
+
void prepare(float root_noise_weight, const std::vector<std::vector<float> > &noises, const std::vector<float> &rewards, const std::vector<float> &values, const std::vector<std::vector<float> > &policies, std::vector<int> &to_play_batch);
|
63 |
+
void prepare_no_noise(const std::vector<float> &rewards, const std::vector<float> &values, const std::vector<std::vector<float> > &policies, std::vector<int> &to_play_batch);
|
64 |
+
void clear();
|
65 |
+
std::vector<std::vector<int> > get_trajectories();
|
66 |
+
std::vector<std::vector<int> > get_distributions();
|
67 |
+
std::vector<std::vector<float> > get_children_values(float discount, int action_space_size);
|
68 |
+
std::vector<std::vector<float> > get_policies(float discount, int action_space_size);
|
69 |
+
std::vector<float> get_values();
|
70 |
+
|
71 |
+
};
|
72 |
+
|
73 |
+
class CSearchResults{
|
74 |
+
public:
|
75 |
+
int num;
|
76 |
+
std::vector<int> latent_state_index_in_search_path, latent_state_index_in_batch, last_actions, search_lens;
|
77 |
+
std::vector<int> virtual_to_play_batchs;
|
78 |
+
std::vector<CNode*> nodes;
|
79 |
+
std::vector<std::vector<CNode*> > search_paths;
|
80 |
+
|
81 |
+
CSearchResults();
|
82 |
+
CSearchResults(int num);
|
83 |
+
~CSearchResults();
|
84 |
+
|
85 |
+
};
|
86 |
+
|
87 |
+
|
88 |
+
//*********************************************************
|
89 |
+
void update_tree_q(CNode* root, tools::CMinMaxStats &min_max_stats, float discount, int players);
|
90 |
+
void cback_propagate(std::vector<CNode*> &search_path, tools::CMinMaxStats &min_max_stats, int to_play, float value, float discount);
|
91 |
+
void cbatch_back_propagate(int current_latent_state_index, float discount, const std::vector<float> &rewards, const std::vector<float> &values, const std::vector<std::vector<float> > &policies, tools::CMinMaxStatsList *min_max_stats_lst, CSearchResults &results, std::vector<int> &to_play_batch);
|
92 |
+
int cselect_root_child(CNode* root, float discount, int num_simulations, int max_num_considered_actions);
|
93 |
+
int cselect_interior_child(CNode* root, float discount);
|
94 |
+
int cselect_child(CNode* root, tools::CMinMaxStats &min_max_stats, int pb_c_base, float pb_c_init, float discount, float mean_q, int players);
|
95 |
+
float cucb_score(CNode *child, tools::CMinMaxStats &min_max_stats, float parent_mean_q, float total_children_visit_counts, float pb_c_base, float pb_c_init, float discount, int players);
|
96 |
+
void cbatch_traverse(CRoots *roots, int num_simulations, int max_num_considered_actions, float discount, CSearchResults &results, std::vector<int> &virtual_to_play_batch);
|
97 |
+
void csoftmax(std::vector<float> &input, int input_len);
|
98 |
+
float compute_mixed_value(float raw_value, std::vector<float> q_values, std::vector<int> &child_visit, std::vector<float> &child_prior);
|
99 |
+
void rescale_qvalues(std::vector<float> &value, float epsilon);
|
100 |
+
std::vector<float> qtransform_completed_by_mix_value(CNode *root, std::vector<int> & child_visit, \
|
101 |
+
std::vector<float> & child_prior, float discount= 0.99, float maxvisit_init = 50.0, float value_scale = 0.1, \
|
102 |
+
bool rescale_values = true, float epsilon = 1e-8);
|
103 |
+
std::vector<int> get_sequence_of_considered_visits(int max_num_considered_actions, int num_simulations);
|
104 |
+
std::vector<std::vector<int> > get_table_of_considered_visits(int max_num_considered_actions, int num_simulations);
|
105 |
+
std::vector<float> score_considered(int considered_visit, std::vector<float> gumbel, std::vector<float> logits, std::vector<float> normalized_qvalues, std::vector<int> visit_counts);
|
106 |
+
std::vector<float> generate_gumbel(float gumbel_scale, float gumbel_rng, int shape);
|
107 |
+
}
|
108 |
+
|
109 |
+
#endif
|
LightZero/lzero/mcts/ctree/ctree_muzero/lib/cnode.cpp
ADDED
@@ -0,0 +1,715 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// C++11
|
2 |
+
|
3 |
+
#include <iostream>
|
4 |
+
#include "cnode.h"
|
5 |
+
#include <algorithm>
|
6 |
+
#include <map>
|
7 |
+
#include <cassert>
|
8 |
+
|
9 |
+
#ifdef _WIN32
|
10 |
+
#include "..\..\common_lib\utils.cpp"
|
11 |
+
#else
|
12 |
+
#include "../../common_lib/utils.cpp"
|
13 |
+
#endif
|
14 |
+
|
15 |
+
|
16 |
+
namespace tree
|
17 |
+
{
|
18 |
+
|
19 |
+
CSearchResults::CSearchResults()
|
20 |
+
{
|
21 |
+
/*
|
22 |
+
Overview:
|
23 |
+
Initialization of CSearchResults, the default result number is set to 0.
|
24 |
+
*/
|
25 |
+
this->num = 0;
|
26 |
+
}
|
27 |
+
|
28 |
+
CSearchResults::CSearchResults(int num)
|
29 |
+
{
|
30 |
+
/*
|
31 |
+
Overview:
|
32 |
+
Initialization of CSearchResults with result number.
|
33 |
+
*/
|
34 |
+
this->num = num;
|
35 |
+
for (int i = 0; i < num; ++i)
|
36 |
+
{
|
37 |
+
this->search_paths.push_back(std::vector<CNode *>());
|
38 |
+
}
|
39 |
+
}
|
40 |
+
|
41 |
+
CSearchResults::~CSearchResults() {}
|
42 |
+
|
43 |
+
//*********************************************************
|
44 |
+
|
45 |
+
CNode::CNode()
|
46 |
+
{
|
47 |
+
/*
|
48 |
+
Overview:
|
49 |
+
Initialization of CNode.
|
50 |
+
*/
|
51 |
+
this->prior = 0;
|
52 |
+
this->legal_actions = legal_actions;
|
53 |
+
|
54 |
+
this->visit_count = 0;
|
55 |
+
this->value_sum = 0;
|
56 |
+
this->best_action = -1;
|
57 |
+
this->to_play = 0;
|
58 |
+
this->reward = 0.0;
|
59 |
+
}
|
60 |
+
|
61 |
+
CNode::CNode(float prior, std::vector<int> &legal_actions)
|
62 |
+
{
|
63 |
+
/*
|
64 |
+
Overview:
|
65 |
+
Initialization of CNode with prior value and legal actions.
|
66 |
+
Arguments:
|
67 |
+
- prior: the prior value of this node.
|
68 |
+
- legal_actions: a vector of legal actions of this node.
|
69 |
+
*/
|
70 |
+
this->prior = prior;
|
71 |
+
this->legal_actions = legal_actions;
|
72 |
+
|
73 |
+
this->visit_count = 0;
|
74 |
+
this->value_sum = 0;
|
75 |
+
this->best_action = -1;
|
76 |
+
this->to_play = 0;
|
77 |
+
this->current_latent_state_index = -1;
|
78 |
+
this->batch_index = -1;
|
79 |
+
}
|
80 |
+
|
81 |
+
CNode::~CNode() {}
|
82 |
+
|
83 |
+
void CNode::expand(int to_play, int current_latent_state_index, int batch_index, float reward, const std::vector<float> &policy_logits)
|
84 |
+
{
|
85 |
+
/*
|
86 |
+
Overview:
|
87 |
+
Expand the child nodes of the current node.
|
88 |
+
Arguments:
|
89 |
+
- to_play: which player to play the game in the current node.
|
90 |
+
- current_latent_state_index: The index of latent state of the leaf node in the search path of the current node.
|
91 |
+
- batch_index: The index of latent state of the leaf node in the search path of the current node.
|
92 |
+
- reward: the reward of the current node.
|
93 |
+
- policy_logits: the logit of the child nodes.
|
94 |
+
*/
|
95 |
+
this->to_play = to_play;
|
96 |
+
this->current_latent_state_index = current_latent_state_index;
|
97 |
+
this->batch_index = batch_index;
|
98 |
+
this->reward = reward;
|
99 |
+
|
100 |
+
int action_num = policy_logits.size();
|
101 |
+
if (this->legal_actions.size() == 0)
|
102 |
+
{
|
103 |
+
for (int i = 0; i < action_num; ++i)
|
104 |
+
{
|
105 |
+
this->legal_actions.push_back(i);
|
106 |
+
}
|
107 |
+
}
|
108 |
+
float temp_policy;
|
109 |
+
float policy_sum = 0.0;
|
110 |
+
|
111 |
+
#ifdef _WIN32
|
112 |
+
// 创建动态数组
|
113 |
+
float* policy = new float[action_num];
|
114 |
+
#else
|
115 |
+
float policy[action_num];
|
116 |
+
#endif
|
117 |
+
|
118 |
+
float policy_max = FLOAT_MIN;
|
119 |
+
for (auto a : this->legal_actions)
|
120 |
+
{
|
121 |
+
if (policy_max < policy_logits[a])
|
122 |
+
{
|
123 |
+
policy_max = policy_logits[a];
|
124 |
+
}
|
125 |
+
}
|
126 |
+
|
127 |
+
for (auto a : this->legal_actions)
|
128 |
+
{
|
129 |
+
temp_policy = exp(policy_logits[a] - policy_max);
|
130 |
+
policy_sum += temp_policy;
|
131 |
+
policy[a] = temp_policy;
|
132 |
+
}
|
133 |
+
|
134 |
+
float prior;
|
135 |
+
for (auto a : this->legal_actions)
|
136 |
+
{
|
137 |
+
prior = policy[a] / policy_sum;
|
138 |
+
std::vector<int> tmp_empty;
|
139 |
+
this->children[a] = CNode(prior, tmp_empty); // only for muzero/efficient zero, not support alphazero
|
140 |
+
}
|
141 |
+
|
142 |
+
#ifdef _WIN32
|
143 |
+
// 释放数组内存
|
144 |
+
delete[] policy;
|
145 |
+
#else
|
146 |
+
#endif
|
147 |
+
}
|
148 |
+
|
149 |
+
void CNode::add_exploration_noise(float exploration_fraction, const std::vector<float> &noises)
|
150 |
+
{
|
151 |
+
/*
|
152 |
+
Overview:
|
153 |
+
Add a noise to the prior of the child nodes.
|
154 |
+
Arguments:
|
155 |
+
- exploration_fraction: the fraction to add noise.
|
156 |
+
- noises: the vector of noises added to each child node.
|
157 |
+
*/
|
158 |
+
float noise, prior;
|
159 |
+
for (int i = 0; i < this->legal_actions.size(); ++i)
|
160 |
+
{
|
161 |
+
noise = noises[i];
|
162 |
+
CNode *child = this->get_child(this->legal_actions[i]);
|
163 |
+
|
164 |
+
prior = child->prior;
|
165 |
+
child->prior = prior * (1 - exploration_fraction) + noise * exploration_fraction;
|
166 |
+
}
|
167 |
+
}
|
168 |
+
|
169 |
+
float CNode::compute_mean_q(int isRoot, float parent_q, float discount_factor)
|
170 |
+
{
|
171 |
+
/*
|
172 |
+
Overview:
|
173 |
+
Compute the mean q value of the current node.
|
174 |
+
Arguments:
|
175 |
+
- isRoot: whether the current node is a root node.
|
176 |
+
- parent_q: the q value of the parent node.
|
177 |
+
- discount_factor: the discount_factor of reward.
|
178 |
+
*/
|
179 |
+
float total_unsigned_q = 0.0;
|
180 |
+
int total_visits = 0;
|
181 |
+
for (auto a : this->legal_actions)
|
182 |
+
{
|
183 |
+
CNode *child = this->get_child(a);
|
184 |
+
if (child->visit_count > 0)
|
185 |
+
{
|
186 |
+
float true_reward = child->reward;
|
187 |
+
float qsa = true_reward + discount_factor * child->value();
|
188 |
+
total_unsigned_q += qsa;
|
189 |
+
total_visits += 1;
|
190 |
+
}
|
191 |
+
}
|
192 |
+
|
193 |
+
float mean_q = 0.0;
|
194 |
+
if (isRoot && total_visits > 0)
|
195 |
+
{
|
196 |
+
mean_q = (total_unsigned_q) / (total_visits);
|
197 |
+
}
|
198 |
+
else
|
199 |
+
{
|
200 |
+
mean_q = (parent_q + total_unsigned_q) / (total_visits + 1);
|
201 |
+
}
|
202 |
+
return mean_q;
|
203 |
+
}
|
204 |
+
|
205 |
+
void CNode::print_out()
|
206 |
+
{
|
207 |
+
return;
|
208 |
+
}
|
209 |
+
|
210 |
+
int CNode::expanded()
|
211 |
+
{
|
212 |
+
/*
|
213 |
+
Overview:
|
214 |
+
Return whether the current node is expanded.
|
215 |
+
*/
|
216 |
+
return this->children.size() > 0;
|
217 |
+
}
|
218 |
+
|
219 |
+
float CNode::value()
|
220 |
+
{
|
221 |
+
/*
|
222 |
+
Overview:
|
223 |
+
Return the real value of the current tree.
|
224 |
+
*/
|
225 |
+
float true_value = 0.0;
|
226 |
+
if (this->visit_count == 0)
|
227 |
+
{
|
228 |
+
return true_value;
|
229 |
+
}
|
230 |
+
else
|
231 |
+
{
|
232 |
+
true_value = this->value_sum / this->visit_count;
|
233 |
+
return true_value;
|
234 |
+
}
|
235 |
+
}
|
236 |
+
|
237 |
+
std::vector<int> CNode::get_trajectory()
|
238 |
+
{
|
239 |
+
/*
|
240 |
+
Overview:
|
241 |
+
Find the current best trajectory starts from the current node.
|
242 |
+
Outputs:
|
243 |
+
- traj: a vector of node index, which is the current best trajectory from this node.
|
244 |
+
*/
|
245 |
+
std::vector<int> traj;
|
246 |
+
|
247 |
+
CNode *node = this;
|
248 |
+
int best_action = node->best_action;
|
249 |
+
while (best_action >= 0)
|
250 |
+
{
|
251 |
+
traj.push_back(best_action);
|
252 |
+
|
253 |
+
node = node->get_child(best_action);
|
254 |
+
best_action = node->best_action;
|
255 |
+
}
|
256 |
+
return traj;
|
257 |
+
}
|
258 |
+
|
259 |
+
std::vector<int> CNode::get_children_distribution()
|
260 |
+
{
|
261 |
+
/*
|
262 |
+
Overview:
|
263 |
+
Get the distribution of child nodes in the format of visit_count.
|
264 |
+
Outputs:
|
265 |
+
- distribution: a vector of distribution of child nodes in the format of visit count (i.e. [1,3,0,2,5]).
|
266 |
+
*/
|
267 |
+
std::vector<int> distribution;
|
268 |
+
if (this->expanded())
|
269 |
+
{
|
270 |
+
for (auto a : this->legal_actions)
|
271 |
+
{
|
272 |
+
CNode *child = this->get_child(a);
|
273 |
+
distribution.push_back(child->visit_count);
|
274 |
+
}
|
275 |
+
}
|
276 |
+
return distribution;
|
277 |
+
}
|
278 |
+
|
279 |
+
CNode *CNode::get_child(int action)
|
280 |
+
{
|
281 |
+
/*
|
282 |
+
Overview:
|
283 |
+
Get the child node corresponding to the input action.
|
284 |
+
Arguments:
|
285 |
+
- action: the action to get child.
|
286 |
+
*/
|
287 |
+
return &(this->children[action]);
|
288 |
+
}
|
289 |
+
|
290 |
+
//*********************************************************
|
291 |
+
|
292 |
+
CRoots::CRoots()
|
293 |
+
{
|
294 |
+
/*
|
295 |
+
Overview:
|
296 |
+
The initialization of CRoots.
|
297 |
+
*/
|
298 |
+
this->root_num = 0;
|
299 |
+
}
|
300 |
+
|
301 |
+
CRoots::CRoots(int root_num, std::vector<std::vector<int> > &legal_actions_list)
|
302 |
+
{
|
303 |
+
/*
|
304 |
+
Overview:
|
305 |
+
The initialization of CRoots with root num and legal action lists.
|
306 |
+
Arguments:
|
307 |
+
- root_num: the number of the current root.
|
308 |
+
- legal_action_list: the vector of the legal action of this root.
|
309 |
+
*/
|
310 |
+
this->root_num = root_num;
|
311 |
+
this->legal_actions_list = legal_actions_list;
|
312 |
+
|
313 |
+
for (int i = 0; i < root_num; ++i)
|
314 |
+
{
|
315 |
+
this->roots.push_back(CNode(0, this->legal_actions_list[i]));
|
316 |
+
}
|
317 |
+
}
|
318 |
+
|
319 |
+
CRoots::~CRoots() {}
|
320 |
+
|
321 |
+
void CRoots::prepare(float root_noise_weight, const std::vector<std::vector<float> > &noises, const std::vector<float> &rewards, const std::vector<std::vector<float> > &policies, std::vector<int> &to_play_batch)
|
322 |
+
{
|
323 |
+
/*
|
324 |
+
Overview:
|
325 |
+
Expand the roots and add noises.
|
326 |
+
Arguments:
|
327 |
+
- root_noise_weight: the exploration fraction of roots
|
328 |
+
- noises: the vector of noise add to the roots.
|
329 |
+
- rewards: the vector of rewards of each root.
|
330 |
+
- policies: the vector of policy logits of each root.
|
331 |
+
- to_play_batch: the vector of the player side of each root.
|
332 |
+
*/
|
333 |
+
for (int i = 0; i < this->root_num; ++i)
|
334 |
+
{
|
335 |
+
this->roots[i].expand(to_play_batch[i], 0, i, rewards[i], policies[i]);
|
336 |
+
this->roots[i].add_exploration_noise(root_noise_weight, noises[i]);
|
337 |
+
|
338 |
+
this->roots[i].visit_count += 1;
|
339 |
+
}
|
340 |
+
}
|
341 |
+
|
342 |
+
void CRoots::prepare_no_noise(const std::vector<float> &rewards, const std::vector<std::vector<float> > &policies, std::vector<int> &to_play_batch)
|
343 |
+
{
|
344 |
+
/*
|
345 |
+
Overview:
|
346 |
+
Expand the roots without noise.
|
347 |
+
Arguments:
|
348 |
+
- rewards: the vector of rewards of each root.
|
349 |
+
- policies: the vector of policy logits of each root.
|
350 |
+
- to_play_batch: the vector of the player side of each root.
|
351 |
+
*/
|
352 |
+
for (int i = 0; i < this->root_num; ++i)
|
353 |
+
{
|
354 |
+
this->roots[i].expand(to_play_batch[i], 0, i, rewards[i], policies[i]);
|
355 |
+
|
356 |
+
this->roots[i].visit_count += 1;
|
357 |
+
}
|
358 |
+
}
|
359 |
+
|
360 |
+
void CRoots::clear()
|
361 |
+
{
|
362 |
+
/*
|
363 |
+
Overview:
|
364 |
+
Clear the roots vector.
|
365 |
+
*/
|
366 |
+
this->roots.clear();
|
367 |
+
}
|
368 |
+
|
369 |
+
std::vector<std::vector<int> > CRoots::get_trajectories()
|
370 |
+
{
|
371 |
+
/*
|
372 |
+
Overview:
|
373 |
+
Find the current best trajectory starts from each root.
|
374 |
+
Outputs:
|
375 |
+
- traj: a vector of node index, which is the current best trajectory from each root.
|
376 |
+
*/
|
377 |
+
std::vector<std::vector<int> > trajs;
|
378 |
+
trajs.reserve(this->root_num);
|
379 |
+
|
380 |
+
for (int i = 0; i < this->root_num; ++i)
|
381 |
+
{
|
382 |
+
trajs.push_back(this->roots[i].get_trajectory());
|
383 |
+
}
|
384 |
+
return trajs;
|
385 |
+
}
|
386 |
+
|
387 |
+
std::vector<std::vector<int> > CRoots::get_distributions()
|
388 |
+
{
|
389 |
+
/*
|
390 |
+
Overview:
|
391 |
+
Get the children distribution of each root.
|
392 |
+
Outputs:
|
393 |
+
- distribution: a vector of distribution of child nodes in the format of visit count (i.e. [1,3,0,2,5]).
|
394 |
+
*/
|
395 |
+
std::vector<std::vector<int> > distributions;
|
396 |
+
distributions.reserve(this->root_num);
|
397 |
+
|
398 |
+
for (int i = 0; i < this->root_num; ++i)
|
399 |
+
{
|
400 |
+
distributions.push_back(this->roots[i].get_children_distribution());
|
401 |
+
}
|
402 |
+
return distributions;
|
403 |
+
}
|
404 |
+
|
405 |
+
std::vector<float> CRoots::get_values()
|
406 |
+
{
|
407 |
+
/*
|
408 |
+
Overview:
|
409 |
+
Return the real value of each root.
|
410 |
+
*/
|
411 |
+
std::vector<float> values;
|
412 |
+
for (int i = 0; i < this->root_num; ++i)
|
413 |
+
{
|
414 |
+
values.push_back(this->roots[i].value());
|
415 |
+
}
|
416 |
+
return values;
|
417 |
+
}
|
418 |
+
|
419 |
+
//*********************************************************
|
420 |
+
//
|
421 |
+
void update_tree_q(CNode *root, tools::CMinMaxStats &min_max_stats, float discount_factor, int players)
|
422 |
+
{
|
423 |
+
/*
|
424 |
+
Overview:
|
425 |
+
Update the q value of the root and its child nodes.
|
426 |
+
Arguments:
|
427 |
+
- root: the root that update q value from.
|
428 |
+
- min_max_stats: a tool used to min-max normalize the q value.
|
429 |
+
- discount_factor: the discount factor of reward.
|
430 |
+
- players: the number of players.
|
431 |
+
*/
|
432 |
+
std::stack<CNode *> node_stack;
|
433 |
+
node_stack.push(root);
|
434 |
+
while (node_stack.size() > 0)
|
435 |
+
{
|
436 |
+
CNode *node = node_stack.top();
|
437 |
+
node_stack.pop();
|
438 |
+
|
439 |
+
if (node != root)
|
440 |
+
{
|
441 |
+
// # NOTE: in self-play-mode, value_prefix is not calculated according to the perspective of current player of node,
|
442 |
+
// # but treated as 1 player, just for obtaining the true reward in the perspective of current player of node.
|
443 |
+
// # true_reward = node.value_prefix - (- parent_value_prefix)
|
444 |
+
// float true_reward = node->value_prefix - node->parent_value_prefix;
|
445 |
+
float true_reward = node->reward;
|
446 |
+
|
447 |
+
float qsa;
|
448 |
+
if (players == 1)
|
449 |
+
qsa = true_reward + discount_factor * node->value();
|
450 |
+
else if (players == 2)
|
451 |
+
// TODO(pu):
|
452 |
+
qsa = true_reward + discount_factor * (-1) * node->value();
|
453 |
+
|
454 |
+
min_max_stats.update(qsa);
|
455 |
+
}
|
456 |
+
|
457 |
+
for (auto a : node->legal_actions)
|
458 |
+
{
|
459 |
+
CNode *child = node->get_child(a);
|
460 |
+
if (child->expanded())
|
461 |
+
{
|
462 |
+
node_stack.push(child);
|
463 |
+
}
|
464 |
+
}
|
465 |
+
}
|
466 |
+
}
|
467 |
+
|
468 |
+
void cbackpropagate(std::vector<CNode *> &search_path, tools::CMinMaxStats &min_max_stats, int to_play, float value, float discount_factor)
|
469 |
+
{
|
470 |
+
/*
|
471 |
+
Overview:
|
472 |
+
Update the value sum and visit count of nodes along the search path.
|
473 |
+
Arguments:
|
474 |
+
- search_path: a vector of nodes on the search path.
|
475 |
+
- min_max_stats: a tool used to min-max normalize the q value.
|
476 |
+
- to_play: which player to play the game in the current node.
|
477 |
+
- value: the value to propagate along the search path.
|
478 |
+
- discount_factor: the discount factor of reward.
|
479 |
+
*/
|
480 |
+
assert(to_play == -1 || to_play == 1 || to_play == 2);
|
481 |
+
if (to_play == -1)
|
482 |
+
{
|
483 |
+
// for play-with-bot-mode
|
484 |
+
float bootstrap_value = value;
|
485 |
+
int path_len = search_path.size();
|
486 |
+
for (int i = path_len - 1; i >= 0; --i)
|
487 |
+
{
|
488 |
+
CNode *node = search_path[i];
|
489 |
+
node->value_sum += bootstrap_value;
|
490 |
+
node->visit_count += 1;
|
491 |
+
|
492 |
+
float true_reward = node->reward;
|
493 |
+
|
494 |
+
min_max_stats.update(true_reward + discount_factor * node->value());
|
495 |
+
|
496 |
+
bootstrap_value = true_reward + discount_factor * bootstrap_value;
|
497 |
+
}
|
498 |
+
}
|
499 |
+
else
|
500 |
+
{
|
501 |
+
// for self-play-mode
|
502 |
+
float bootstrap_value = value;
|
503 |
+
int path_len = search_path.size();
|
504 |
+
for (int i = path_len - 1; i >= 0; --i)
|
505 |
+
{
|
506 |
+
CNode *node = search_path[i];
|
507 |
+
if (node->to_play == to_play)
|
508 |
+
node->value_sum += bootstrap_value;
|
509 |
+
else
|
510 |
+
node->value_sum += -bootstrap_value;
|
511 |
+
node->visit_count += 1;
|
512 |
+
|
513 |
+
// NOTE: in self-play-mode, value_prefix is not calculated according to the perspective of current player of node,
|
514 |
+
// but treated as 1 player, just for obtaining the true reward in the perspective of current player of node.
|
515 |
+
// float true_reward = node->value_prefix - parent_value_prefix;
|
516 |
+
float true_reward = node->reward;
|
517 |
+
|
518 |
+
// TODO(pu): why in muzero-general is - node.value
|
519 |
+
min_max_stats.update(true_reward + discount_factor * -node->value());
|
520 |
+
|
521 |
+
if (node->to_play == to_play)
|
522 |
+
bootstrap_value = -true_reward + discount_factor * bootstrap_value;
|
523 |
+
else
|
524 |
+
bootstrap_value = true_reward + discount_factor * bootstrap_value;
|
525 |
+
}
|
526 |
+
}
|
527 |
+
}
|
528 |
+
|
529 |
+
void cbatch_backpropagate(int current_latent_state_index, float discount_factor, const std::vector<float> &value_prefixs, const std::vector<float> &values, const std::vector<std::vector<float> > &policies, tools::CMinMaxStatsList *min_max_stats_lst, CSearchResults &results, std::vector<int> &to_play_batch)
|
530 |
+
{
|
531 |
+
/*
|
532 |
+
Overview:
|
533 |
+
Expand the nodes along the search path and update the infos.
|
534 |
+
Arguments:
|
535 |
+
- current_latent_state_index: The index of latent state of the leaf node in the search path.
|
536 |
+
- discount_factor: the discount factor of reward.
|
537 |
+
- value_prefixs: the value prefixs of nodes along the search path.
|
538 |
+
- values: the values to propagate along the search path.
|
539 |
+
- policies: the policy logits of nodes along the search path.
|
540 |
+
- min_max_stats: a tool used to min-max normalize the q value.
|
541 |
+
- results: the search results.
|
542 |
+
- to_play_batch: the batch of which player is playing on this node.
|
543 |
+
*/
|
544 |
+
for (int i = 0; i < results.num; ++i)
|
545 |
+
{
|
546 |
+
results.nodes[i]->expand(to_play_batch[i], current_latent_state_index, i, value_prefixs[i], policies[i]);
|
547 |
+
cbackpropagate(results.search_paths[i], min_max_stats_lst->stats_lst[i], to_play_batch[i], values[i], discount_factor);
|
548 |
+
}
|
549 |
+
}
|
550 |
+
|
551 |
+
int cselect_child(CNode *root, tools::CMinMaxStats &min_max_stats, int pb_c_base, float pb_c_init, float discount_factor, float mean_q, int players)
|
552 |
+
{
|
553 |
+
/*
|
554 |
+
Overview:
|
555 |
+
Select the child node of the roots according to ucb scores.
|
556 |
+
Arguments:
|
557 |
+
- root: the roots to select the child node.
|
558 |
+
- min_max_stats: a tool used to min-max normalize the score.
|
559 |
+
- pb_c_base: constants c2 in muzero.
|
560 |
+
- pb_c_init: constants c1 in muzero.
|
561 |
+
- disount_factor: the discount factor of reward.
|
562 |
+
- mean_q: the mean q value of the parent node.
|
563 |
+
- players: the number of players.
|
564 |
+
Outputs:
|
565 |
+
- action: the action to select.
|
566 |
+
*/
|
567 |
+
float max_score = FLOAT_MIN;
|
568 |
+
const float epsilon = 0.000001;
|
569 |
+
std::vector<int> max_index_lst;
|
570 |
+
for (auto a : root->legal_actions)
|
571 |
+
{
|
572 |
+
|
573 |
+
CNode *child = root->get_child(a);
|
574 |
+
float temp_score = cucb_score(child, min_max_stats, mean_q, root->visit_count - 1, pb_c_base, pb_c_init, discount_factor, players);
|
575 |
+
|
576 |
+
if (max_score < temp_score)
|
577 |
+
{
|
578 |
+
max_score = temp_score;
|
579 |
+
|
580 |
+
max_index_lst.clear();
|
581 |
+
max_index_lst.push_back(a);
|
582 |
+
}
|
583 |
+
else if (temp_score >= max_score - epsilon)
|
584 |
+
{
|
585 |
+
max_index_lst.push_back(a);
|
586 |
+
}
|
587 |
+
}
|
588 |
+
|
589 |
+
int action = 0;
|
590 |
+
if (max_index_lst.size() > 0)
|
591 |
+
{
|
592 |
+
int rand_index = rand() % max_index_lst.size();
|
593 |
+
action = max_index_lst[rand_index];
|
594 |
+
}
|
595 |
+
return action;
|
596 |
+
}
|
597 |
+
|
598 |
+
float cucb_score(CNode *child, tools::CMinMaxStats &min_max_stats, float parent_mean_q, float total_children_visit_counts, float pb_c_base, float pb_c_init, float discount_factor, int players)
|
599 |
+
{
|
600 |
+
/*
|
601 |
+
Overview:
|
602 |
+
Compute the ucb score of the child.
|
603 |
+
Arguments:
|
604 |
+
- child: the child node to compute ucb score.
|
605 |
+
- min_max_stats: a tool used to min-max normalize the score.
|
606 |
+
- mean_q: the mean q value of the parent node.
|
607 |
+
- total_children_visit_counts: the total visit counts of the child nodes of the parent node.
|
608 |
+
- pb_c_base: constants c2 in muzero.
|
609 |
+
- pb_c_init: constants c1 in muzero.
|
610 |
+
- disount_factor: the discount factor of reward.
|
611 |
+
- players: the number of players.
|
612 |
+
Outputs:
|
613 |
+
- ucb_value: the ucb score of the child.
|
614 |
+
*/
|
615 |
+
float pb_c = 0.0, prior_score = 0.0, value_score = 0.0;
|
616 |
+
pb_c = log((total_children_visit_counts + pb_c_base + 1) / pb_c_base) + pb_c_init;
|
617 |
+
pb_c *= (sqrt(total_children_visit_counts) / (child->visit_count + 1));
|
618 |
+
|
619 |
+
prior_score = pb_c * child->prior;
|
620 |
+
if (child->visit_count == 0)
|
621 |
+
{
|
622 |
+
value_score = parent_mean_q;
|
623 |
+
}
|
624 |
+
else
|
625 |
+
{
|
626 |
+
float true_reward = child->reward;
|
627 |
+
if (players == 1)
|
628 |
+
value_score = true_reward + discount_factor * child->value();
|
629 |
+
else if (players == 2)
|
630 |
+
value_score = true_reward + discount_factor * (-child->value());
|
631 |
+
}
|
632 |
+
|
633 |
+
value_score = min_max_stats.normalize(value_score);
|
634 |
+
|
635 |
+
if (value_score < 0)
|
636 |
+
value_score = 0;
|
637 |
+
if (value_score > 1)
|
638 |
+
value_score = 1;
|
639 |
+
|
640 |
+
float ucb_value = prior_score + value_score;
|
641 |
+
return ucb_value;
|
642 |
+
}
|
643 |
+
|
644 |
+
void cbatch_traverse(CRoots *roots, int pb_c_base, float pb_c_init, float discount_factor, tools::CMinMaxStatsList *min_max_stats_lst, CSearchResults &results, std::vector<int> &virtual_to_play_batch)
|
645 |
+
{
|
646 |
+
/*
|
647 |
+
Overview:
|
648 |
+
Search node path from the roots.
|
649 |
+
Arguments:
|
650 |
+
- roots: the roots that search from.
|
651 |
+
- pb_c_base: constants c2 in muzero.
|
652 |
+
- pb_c_init: constants c1 in muzero.
|
653 |
+
- disount_factor: the discount factor of reward.
|
654 |
+
- min_max_stats: a tool used to min-max normalize the score.
|
655 |
+
- results: the search results.
|
656 |
+
- virtual_to_play_batch: the batch of which player is playing on this node.
|
657 |
+
*/
|
658 |
+
// set seed
|
659 |
+
get_time_and_set_rand_seed();
|
660 |
+
|
661 |
+
int last_action = -1;
|
662 |
+
float parent_q = 0.0;
|
663 |
+
results.search_lens = std::vector<int>();
|
664 |
+
|
665 |
+
int players = 0;
|
666 |
+
int largest_element = *max_element(virtual_to_play_batch.begin(), virtual_to_play_batch.end()); // 0 or 2
|
667 |
+
if (largest_element == -1)
|
668 |
+
players = 1;
|
669 |
+
else
|
670 |
+
players = 2;
|
671 |
+
|
672 |
+
for (int i = 0; i < results.num; ++i)
|
673 |
+
{
|
674 |
+
CNode *node = &(roots->roots[i]);
|
675 |
+
int is_root = 1;
|
676 |
+
int search_len = 0;
|
677 |
+
results.search_paths[i].push_back(node);
|
678 |
+
|
679 |
+
while (node->expanded())
|
680 |
+
{
|
681 |
+
float mean_q = node->compute_mean_q(is_root, parent_q, discount_factor);
|
682 |
+
is_root = 0;
|
683 |
+
parent_q = mean_q;
|
684 |
+
|
685 |
+
int action = cselect_child(node, min_max_stats_lst->stats_lst[i], pb_c_base, pb_c_init, discount_factor, mean_q, players);
|
686 |
+
if (players > 1)
|
687 |
+
{
|
688 |
+
assert(virtual_to_play_batch[i] == 1 || virtual_to_play_batch[i] == 2);
|
689 |
+
if (virtual_to_play_batch[i] == 1)
|
690 |
+
virtual_to_play_batch[i] = 2;
|
691 |
+
else
|
692 |
+
virtual_to_play_batch[i] = 1;
|
693 |
+
}
|
694 |
+
|
695 |
+
node->best_action = action;
|
696 |
+
// next
|
697 |
+
node = node->get_child(action);
|
698 |
+
last_action = action;
|
699 |
+
results.search_paths[i].push_back(node);
|
700 |
+
search_len += 1;
|
701 |
+
}
|
702 |
+
|
703 |
+
CNode *parent = results.search_paths[i][results.search_paths[i].size() - 2];
|
704 |
+
|
705 |
+
results.latent_state_index_in_search_path.push_back(parent->current_latent_state_index);
|
706 |
+
results.latent_state_index_in_batch.push_back(parent->batch_index);
|
707 |
+
|
708 |
+
results.last_actions.push_back(last_action);
|
709 |
+
results.search_lens.push_back(search_len);
|
710 |
+
results.nodes.push_back(node);
|
711 |
+
results.virtual_to_play_batchs.push_back(virtual_to_play_batch[i]);
|
712 |
+
}
|
713 |
+
}
|
714 |
+
|
715 |
+
}
|
LightZero/lzero/mcts/ctree/ctree_muzero/lib/cnode.h
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// C++11
|
2 |
+
|
3 |
+
#ifndef CNODE_H
|
4 |
+
#define CNODE_H
|
5 |
+
|
6 |
+
#include "./../common_lib/cminimax.h"
|
7 |
+
#include <math.h>
|
8 |
+
#include <vector>
|
9 |
+
#include <stack>
|
10 |
+
#include <stdlib.h>
|
11 |
+
#include <time.h>
|
12 |
+
#include <cmath>
|
13 |
+
#include <sys/timeb.h>
|
14 |
+
#include <time.h>
|
15 |
+
#include <map>
|
16 |
+
|
17 |
+
const int DEBUG_MODE = 0;
|
18 |
+
|
19 |
+
namespace tree {
|
20 |
+
|
21 |
+
class CNode {
|
22 |
+
public:
|
23 |
+
int visit_count, to_play, current_latent_state_index, batch_index, best_action;
|
24 |
+
float reward, prior, value_sum;
|
25 |
+
std::vector<int> children_index;
|
26 |
+
std::map<int, CNode> children;
|
27 |
+
|
28 |
+
std::vector<int> legal_actions;
|
29 |
+
|
30 |
+
CNode();
|
31 |
+
CNode(float prior, std::vector<int> &legal_actions);
|
32 |
+
~CNode();
|
33 |
+
|
34 |
+
void expand(int to_play, int current_latent_state_index, int batch_index, float reward, const std::vector<float> &policy_logits);
|
35 |
+
void add_exploration_noise(float exploration_fraction, const std::vector<float> &noises);
|
36 |
+
float compute_mean_q(int isRoot, float parent_q, float discount_factor);
|
37 |
+
void print_out();
|
38 |
+
|
39 |
+
int expanded();
|
40 |
+
|
41 |
+
float value();
|
42 |
+
|
43 |
+
std::vector<int> get_trajectory();
|
44 |
+
std::vector<int> get_children_distribution();
|
45 |
+
CNode* get_child(int action);
|
46 |
+
};
|
47 |
+
|
48 |
+
class CRoots{
|
49 |
+
public:
|
50 |
+
int root_num;
|
51 |
+
std::vector<CNode> roots;
|
52 |
+
std::vector<std::vector<int> > legal_actions_list;
|
53 |
+
|
54 |
+
CRoots();
|
55 |
+
CRoots(int root_num, std::vector<std::vector<int> > &legal_actions_list);
|
56 |
+
~CRoots();
|
57 |
+
|
58 |
+
void prepare(float root_noise_weight, const std::vector<std::vector<float> > &noises, const std::vector<float> &rewards, const std::vector<std::vector<float> > &policies, std::vector<int> &to_play_batch);
|
59 |
+
void prepare_no_noise(const std::vector<float> &rewards, const std::vector<std::vector<float> > &policies, std::vector<int> &to_play_batch);
|
60 |
+
void clear();
|
61 |
+
std::vector<std::vector<int> > get_trajectories();
|
62 |
+
std::vector<std::vector<int> > get_distributions();
|
63 |
+
std::vector<float> get_values();
|
64 |
+
|
65 |
+
};
|
66 |
+
|
67 |
+
class CSearchResults{
|
68 |
+
public:
|
69 |
+
int num;
|
70 |
+
std::vector<int> latent_state_index_in_search_path, latent_state_index_in_batch, last_actions, search_lens;
|
71 |
+
std::vector<int> virtual_to_play_batchs;
|
72 |
+
std::vector<CNode*> nodes;
|
73 |
+
std::vector<std::vector<CNode*> > search_paths;
|
74 |
+
|
75 |
+
CSearchResults();
|
76 |
+
CSearchResults(int num);
|
77 |
+
~CSearchResults();
|
78 |
+
|
79 |
+
};
|
80 |
+
|
81 |
+
|
82 |
+
//*********************************************************
|
83 |
+
void update_tree_q(CNode* root, tools::CMinMaxStats &min_max_stats, float discount_factor, int players);
|
84 |
+
void cbackpropagate(std::vector<CNode*> &search_path, tools::CMinMaxStats &min_max_stats, int to_play, float value, float discount_factor);
|
85 |
+
void cbatch_backpropagate(int current_latent_state_index, float discount_factor, const std::vector<float> &rewards, const std::vector<float> &values, const std::vector<std::vector<float> > &policies, tools::CMinMaxStatsList *min_max_stats_lst, CSearchResults &results, std::vector<int> &to_play_batch);
|
86 |
+
int cselect_child(CNode* root, tools::CMinMaxStats &min_max_stats, int pb_c_base, float pb_c_init, float discount_factor, float mean_q, int players);
|
87 |
+
float cucb_score(CNode *child, tools::CMinMaxStats &min_max_stats, float parent_mean_q, float total_children_visit_counts, float pb_c_base, float pb_c_init, float discount_factor, int players);
|
88 |
+
void cbatch_traverse(CRoots *roots, int pb_c_base, float pb_c_init, float discount_factor, tools::CMinMaxStatsList *min_max_stats_lst, CSearchResults &results, std::vector<int> &virtual_to_play_batch);
|
89 |
+
}
|
90 |
+
|
91 |
+
#endif
|
LightZero/lzero/mcts/ctree/ctree_sampled_efficientzero/lib/cnode.cpp
ADDED
@@ -0,0 +1,1189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// C++11
|
2 |
+
|
3 |
+
#include <iostream>
|
4 |
+
#include "cnode.h"
|
5 |
+
#include <algorithm>
|
6 |
+
#include <map>
|
7 |
+
#include <random>
|
8 |
+
#include <chrono>
|
9 |
+
#include <iostream>
|
10 |
+
#include <vector>
|
11 |
+
#include <stack>
|
12 |
+
#include <math.h>
|
13 |
+
|
14 |
+
#include <stdlib.h>
|
15 |
+
#include <time.h>
|
16 |
+
#include <cmath>
|
17 |
+
#include <sys/timeb.h>
|
18 |
+
#include <time.h>
|
19 |
+
#include <cassert>
|
20 |
+
|
21 |
+
#ifdef _WIN32
|
22 |
+
#include "..\..\common_lib\utils.cpp"
|
23 |
+
#else
|
24 |
+
#include "../../common_lib/utils.cpp"
|
25 |
+
#endif
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
template <class T>
|
30 |
+
size_t hash_combine(std::size_t &seed, const T &val)
|
31 |
+
{
|
32 |
+
/*
|
33 |
+
Overview:
|
34 |
+
Combines a hash value with a new value using a bitwise XOR and a rotation.
|
35 |
+
This function is used to create a hash value for multiple values.
|
36 |
+
Arguments:
|
37 |
+
- seed The current hash value to be combined with.
|
38 |
+
- val The new value to be hashed and combined with the seed.
|
39 |
+
*/
|
40 |
+
std::hash<T> hasher; // Create a hash object for the new value.
|
41 |
+
seed ^= hasher(val) + 0x9e3779b9 + (seed << 6) + (seed >> 2); // Combine the new hash value with the seed.
|
42 |
+
return seed;
|
43 |
+
}
|
44 |
+
|
45 |
+
// Sort by the value of second in descending order.
|
46 |
+
bool cmp(std::pair<int, double> x, std::pair<int, double> y)
|
47 |
+
{
|
48 |
+
return x.second > y.second;
|
49 |
+
}
|
50 |
+
|
51 |
+
namespace tree
|
52 |
+
{
|
53 |
+
//*********************************************************
|
54 |
+
|
55 |
+
CAction::CAction()
|
56 |
+
{
|
57 |
+
/*
|
58 |
+
Overview:
|
59 |
+
Initialization of CAction. Parameterized constructor.
|
60 |
+
*/
|
61 |
+
this->is_root_action = 0;
|
62 |
+
}
|
63 |
+
|
64 |
+
CAction::CAction(std::vector<float> value, int is_root_action)
|
65 |
+
{
|
66 |
+
/*
|
67 |
+
Overview:
|
68 |
+
Initialization of CAction with value and is_root_action. Default constructor.
|
69 |
+
Arguments:
|
70 |
+
- value: a multi-dimensional action.
|
71 |
+
- is_root_action: whether value is a root node.
|
72 |
+
*/
|
73 |
+
this->value = value;
|
74 |
+
this->is_root_action = is_root_action;
|
75 |
+
}
|
76 |
+
|
77 |
+
CAction::~CAction() {} // Destructors.
|
78 |
+
|
79 |
+
std::vector<size_t> CAction::get_hash(void)
|
80 |
+
{
|
81 |
+
/*
|
82 |
+
Overview:
|
83 |
+
get a hash value for each dimension in the multi-dimensional action.
|
84 |
+
*/
|
85 |
+
std::vector<size_t> hash;
|
86 |
+
for (int i = 0; i < this->value.size(); ++i)
|
87 |
+
{
|
88 |
+
std::size_t hash_i = std::hash<std::string>()(std::to_string(this->value[i]));
|
89 |
+
hash.push_back(hash_i);
|
90 |
+
}
|
91 |
+
return hash;
|
92 |
+
}
|
93 |
+
size_t CAction::get_combined_hash(void)
|
94 |
+
{
|
95 |
+
/*
|
96 |
+
Overview:
|
97 |
+
get the final combined hash value from the hash values of each dimension of the multi-dimensional action.
|
98 |
+
*/
|
99 |
+
std::vector<size_t> hash = this->get_hash();
|
100 |
+
size_t combined_hash = hash[0];
|
101 |
+
|
102 |
+
if (hash.size() >= 1)
|
103 |
+
{
|
104 |
+
for (int i = 1; i < hash.size(); ++i)
|
105 |
+
{
|
106 |
+
combined_hash = hash_combine(combined_hash, hash[i]);
|
107 |
+
}
|
108 |
+
}
|
109 |
+
|
110 |
+
return combined_hash;
|
111 |
+
}
|
112 |
+
|
113 |
+
//*********************************************************
|
114 |
+
|
115 |
+
CSearchResults::CSearchResults()
|
116 |
+
{
|
117 |
+
/*
|
118 |
+
Overview:
|
119 |
+
Initialization of CSearchResults, the default result number is set to 0.
|
120 |
+
*/
|
121 |
+
this->num = 0;
|
122 |
+
}
|
123 |
+
|
124 |
+
CSearchResults::CSearchResults(int num)
|
125 |
+
{
|
126 |
+
/*
|
127 |
+
Overview:
|
128 |
+
Initialization of CSearchResults with result number.
|
129 |
+
*/
|
130 |
+
this->num = num;
|
131 |
+
for (int i = 0; i < num; ++i)
|
132 |
+
{
|
133 |
+
this->search_paths.push_back(std::vector<CNode *>());
|
134 |
+
}
|
135 |
+
}
|
136 |
+
|
137 |
+
CSearchResults::~CSearchResults() {}
|
138 |
+
|
139 |
+
//*********************************************************
|
140 |
+
|
141 |
+
CNode::CNode()
|
142 |
+
{
|
143 |
+
/*
|
144 |
+
Overview:
|
145 |
+
Initialization of CNode.
|
146 |
+
*/
|
147 |
+
this->prior = 0;
|
148 |
+
this->action_space_size = 9;
|
149 |
+
this->num_of_sampled_actions = 20;
|
150 |
+
this->continuous_action_space = false;
|
151 |
+
|
152 |
+
this->is_reset = 0;
|
153 |
+
this->visit_count = 0;
|
154 |
+
this->value_sum = 0;
|
155 |
+
CAction best_action;
|
156 |
+
this->best_action = best_action;
|
157 |
+
|
158 |
+
this->to_play = 0;
|
159 |
+
this->value_prefix = 0.0;
|
160 |
+
this->parent_value_prefix = 0.0;
|
161 |
+
}
|
162 |
+
|
163 |
+
CNode::CNode(float prior, std::vector<CAction> &legal_actions, int action_space_size, int num_of_sampled_actions, bool continuous_action_space)
|
164 |
+
{
|
165 |
+
/*
|
166 |
+
Overview:
|
167 |
+
Initialization of CNode with prior, legal actions, action_space_size, num_of_sampled_actions, continuous_action_space.
|
168 |
+
Arguments:
|
169 |
+
- prior: the prior value of this node.
|
170 |
+
- legal_actions: a vector of legal actions of this node.
|
171 |
+
- action_space_size: the size of action space of the current env.
|
172 |
+
- num_of_sampled_actions: the number of sampled actions, i.e. K in the Sampled MuZero papers.
|
173 |
+
- continuous_action_space: whether the action space is continous in current env.
|
174 |
+
*/
|
175 |
+
this->prior = prior;
|
176 |
+
this->legal_actions = legal_actions;
|
177 |
+
|
178 |
+
this->action_space_size = action_space_size;
|
179 |
+
this->num_of_sampled_actions = num_of_sampled_actions;
|
180 |
+
this->continuous_action_space = continuous_action_space;
|
181 |
+
this->is_reset = 0;
|
182 |
+
this->visit_count = 0;
|
183 |
+
this->value_sum = 0;
|
184 |
+
this->to_play = 0;
|
185 |
+
this->value_prefix = 0.0;
|
186 |
+
this->parent_value_prefix = 0.0;
|
187 |
+
this->current_latent_state_index = -1;
|
188 |
+
this->batch_index = -1;
|
189 |
+
}
|
190 |
+
|
191 |
+
CNode::~CNode() {}
|
192 |
+
|
193 |
+
|
194 |
+
void CNode::expand(int to_play, int current_latent_state_index, int batch_index, float value_prefix, const std::vector<float> &policy_logits)
|
195 |
+
{
|
196 |
+
/*
|
197 |
+
Overview:
|
198 |
+
Expand the child nodes of the current node.
|
199 |
+
Arguments:
|
200 |
+
- to_play: which player to play the game in the current node.
|
201 |
+
- current_latent_state_index: the x/first index of hidden state vector of the current node, i.e. the search depth.
|
202 |
+
- batch_index: the y/second index of hidden state vector of the current node, i.e. the index of batch root node, its maximum is ``batch_size``/``env_num``.
|
203 |
+
- value_prefix: the value prefix of the current node.
|
204 |
+
- policy_logits: the logit of the child nodes.
|
205 |
+
*/
|
206 |
+
this->to_play = to_play;
|
207 |
+
this->current_latent_state_index = current_latent_state_index;
|
208 |
+
this->batch_index = batch_index;
|
209 |
+
this->value_prefix = value_prefix;
|
210 |
+
int action_num = policy_logits.size();
|
211 |
+
|
212 |
+
#ifdef _WIN32
|
213 |
+
// 创建动态数组
|
214 |
+
float* policy = new float[action_num];
|
215 |
+
#else
|
216 |
+
float policy[action_num];
|
217 |
+
#endif
|
218 |
+
|
219 |
+
std::vector<int> all_actions;
|
220 |
+
for (int i = 0; i < action_num; ++i)
|
221 |
+
{
|
222 |
+
all_actions.push_back(i);
|
223 |
+
}
|
224 |
+
std::vector<std::vector<float> > sampled_actions_after_tanh;
|
225 |
+
std::vector<float> sampled_actions_log_probs_after_tanh;
|
226 |
+
|
227 |
+
std::vector<int> sampled_actions;
|
228 |
+
std::vector<float> sampled_actions_log_probs;
|
229 |
+
std::vector<float> sampled_actions_probs;
|
230 |
+
std::vector<float> probs;
|
231 |
+
|
232 |
+
/*
|
233 |
+
Overview:
|
234 |
+
When the currennt env has continuous action space, sampled K actions from continuous gaussia distribution policy.
|
235 |
+
When the currennt env has discrete action space, sampled K actions from discrete categirical distribution policy.
|
236 |
+
|
237 |
+
*/
|
238 |
+
if (this->continuous_action_space == true)
|
239 |
+
{
|
240 |
+
// continuous action space for sampled algo..
|
241 |
+
this->action_space_size = policy_logits.size() / 2;
|
242 |
+
std::vector<float> mu;
|
243 |
+
std::vector<float> sigma;
|
244 |
+
for (int i = 0; i < this->action_space_size; ++i)
|
245 |
+
{
|
246 |
+
mu.push_back(policy_logits[i]);
|
247 |
+
sigma.push_back(policy_logits[this->action_space_size + i]);
|
248 |
+
}
|
249 |
+
|
250 |
+
// The number of nanoseconds that have elapsed since epoch(1970: 00: 00 UTC on January 1, 1970). unsigned type will truncate this value.
|
251 |
+
unsigned seed = std::chrono::system_clock::now().time_since_epoch().count();
|
252 |
+
|
253 |
+
// SAC-like tanh, pleasee refer to paper https://arxiv.org/abs/1801.01290.
|
254 |
+
std::vector<std::vector<float> > sampled_actions_before_tanh;
|
255 |
+
|
256 |
+
float sampled_action_one_dim_before_tanh;
|
257 |
+
std::vector<float> sampled_actions_log_probs_before_tanh;
|
258 |
+
|
259 |
+
std::default_random_engine generator(seed);
|
260 |
+
for (int i = 0; i < this->num_of_sampled_actions; ++i)
|
261 |
+
{
|
262 |
+
float sampled_action_prob_before_tanh = 1;
|
263 |
+
// TODO(pu): why here
|
264 |
+
std::vector<float> sampled_action_before_tanh;
|
265 |
+
std::vector<float> sampled_action_after_tanh;
|
266 |
+
std::vector<float> y;
|
267 |
+
|
268 |
+
for (int j = 0; j < this->action_space_size; ++j)
|
269 |
+
{
|
270 |
+
std::normal_distribution<float> distribution(mu[j], sigma[j]);
|
271 |
+
sampled_action_one_dim_before_tanh = distribution(generator);
|
272 |
+
// refer to python normal log_prob method
|
273 |
+
sampled_action_prob_before_tanh *= exp(-pow((sampled_action_one_dim_before_tanh - mu[j]), 2) / (2 * pow(sigma[j], 2)) - log(sigma[j]) - log(sqrt(2 * M_PI)));
|
274 |
+
sampled_action_before_tanh.push_back(sampled_action_one_dim_before_tanh);
|
275 |
+
sampled_action_after_tanh.push_back(tanh(sampled_action_one_dim_before_tanh));
|
276 |
+
y.push_back(1 - pow(tanh(sampled_action_one_dim_before_tanh), 2) + 1e-6);
|
277 |
+
}
|
278 |
+
sampled_actions_before_tanh.push_back(sampled_action_before_tanh);
|
279 |
+
sampled_actions_after_tanh.push_back(sampled_action_after_tanh);
|
280 |
+
sampled_actions_log_probs_before_tanh.push_back(log(sampled_action_prob_before_tanh));
|
281 |
+
float y_sum = std::accumulate(y.begin(), y.end(), 0.);
|
282 |
+
sampled_actions_log_probs_after_tanh.push_back(log(sampled_action_prob_before_tanh) - log(y_sum));
|
283 |
+
}
|
284 |
+
}
|
285 |
+
else
|
286 |
+
{
|
287 |
+
// discrete action space for sampled algo..
|
288 |
+
|
289 |
+
//========================================================
|
290 |
+
// python code
|
291 |
+
//========================================================
|
292 |
+
// if self.legal_actions is not None:
|
293 |
+
// # fisrt use the self.legal_actions to exclude the illegal actions
|
294 |
+
// policy_tmp = [0. for _ in range(self.action_space_size)]
|
295 |
+
// for index, legal_action in enumerate(self.legal_actions):
|
296 |
+
// policy_tmp[legal_action] = policy_logits[index]
|
297 |
+
// policy_logits = policy_tmp
|
298 |
+
// # then empty the self.legal_actions
|
299 |
+
// self.legal_actions = []
|
300 |
+
// then empty the self.legal_actions
|
301 |
+
// prob = torch.softmax(torch.tensor(policy_logits), dim=-1)
|
302 |
+
// sampled_actions = torch.multinomial(prob, self.num_of_sampled_actions, replacement=False)
|
303 |
+
|
304 |
+
//========================================================
|
305 |
+
// TODO(pu): legal actions
|
306 |
+
//========================================================
|
307 |
+
// std::vector<float> policy_tmp;
|
308 |
+
// for (int i = 0; i < this->action_space_size; ++i)
|
309 |
+
// {
|
310 |
+
// policy_tmp.push_back(0.);
|
311 |
+
// }
|
312 |
+
// for (int i = 0; i < this->legal_actions.size(); ++i)
|
313 |
+
// {
|
314 |
+
// policy_tmp[this->legal_actions[i].value] = policy_logits[i];
|
315 |
+
// }
|
316 |
+
// for (int i = 0; i < this->action_space_size; ++i)
|
317 |
+
// {
|
318 |
+
// policy_logits[i] = policy_tmp[i];
|
319 |
+
// }
|
320 |
+
// std::cout << "position 3" << std::endl;
|
321 |
+
|
322 |
+
// python code: legal_actions = []
|
323 |
+
std::vector<CAction> legal_actions;
|
324 |
+
|
325 |
+
// python code: probs = softmax(policy_logits)
|
326 |
+
float logits_exp_sum = 0;
|
327 |
+
for (int i = 0; i < policy_logits.size(); ++i)
|
328 |
+
{
|
329 |
+
logits_exp_sum += exp(policy_logits[i]);
|
330 |
+
}
|
331 |
+
for (int i = 0; i < policy_logits.size(); ++i)
|
332 |
+
{
|
333 |
+
probs.push_back(exp(policy_logits[i]) / (logits_exp_sum + 1e-6));
|
334 |
+
}
|
335 |
+
|
336 |
+
unsigned seed = std::chrono::system_clock::now().time_since_epoch().count();
|
337 |
+
|
338 |
+
// cout << "sampled_action[0]:" << sampled_action[0] <<endl;
|
339 |
+
|
340 |
+
// std::vector<int> sampled_actions;
|
341 |
+
// std::vector<float> sampled_actions_log_probs;
|
342 |
+
// std::vector<float> sampled_actions_probs;
|
343 |
+
std::default_random_engine generator(seed);
|
344 |
+
|
345 |
+
// 有放回抽样
|
346 |
+
// for (int i = 0; i < num_of_sampled_actions; ++i)
|
347 |
+
// {
|
348 |
+
// float sampled_action_prob = 1;
|
349 |
+
// int sampled_action;
|
350 |
+
|
351 |
+
// std::discrete_distribution<float> distribution(probs.begin(), probs.end());
|
352 |
+
|
353 |
+
// // for (float x:distribution.probabilities()) std::cout << x << " ";
|
354 |
+
// sampled_action = distribution(generator);
|
355 |
+
// // std::cout << "sampled_action: " << sampled_action << std::endl;
|
356 |
+
|
357 |
+
// sampled_actions.push_back(sampled_action);
|
358 |
+
// sampled_actions_probs.push_back(probs[sampled_action]);
|
359 |
+
// std::cout << "sampled_actions_probs" << '[' << i << ']' << sampled_actions_probs[i] << std::endl;
|
360 |
+
|
361 |
+
// sampled_actions_log_probs.push_back(log(probs[sampled_action]));
|
362 |
+
// std::cout << "sampled_actions_log_probs" << '[' << i << ']' << sampled_actions_log_probs[i] << std::endl;
|
363 |
+
// }
|
364 |
+
|
365 |
+
// 每个节点的legal_actions应该为一个固定离散集合,所以采用无放回抽样
|
366 |
+
// std::cout << "position uniform_distribution init" << std::endl;
|
367 |
+
std::uniform_real_distribution<double> uniform_distribution(0.0, 1.0); //均匀分布
|
368 |
+
// std::cout << "position uniform_distribution done" << std::endl;
|
369 |
+
std::vector<double> disturbed_probs;
|
370 |
+
std::vector<std::pair<int, double> > disc_action_with_probs;
|
371 |
+
|
372 |
+
// Use the reciprocal of the probability value as the exponent and a random number sampled from a uniform distribution as the base:
|
373 |
+
// Equivalent to adding a uniform random disturbance to the original probability value.
|
374 |
+
for (auto prob : probs)
|
375 |
+
{
|
376 |
+
disturbed_probs.push_back(std::pow(uniform_distribution(generator), 1. / prob));
|
377 |
+
}
|
378 |
+
|
379 |
+
// Sort from large to small according to the probability value after the disturbance:
|
380 |
+
// After sorting, the first vector is the index, and the second vector is the probability value after perturbation sorted from large to small.
|
381 |
+
for (size_t iter = 0; iter < disturbed_probs.size(); iter++)
|
382 |
+
{
|
383 |
+
|
384 |
+
#ifdef __GNUC__
|
385 |
+
// Use push_back for GCC
|
386 |
+
disc_action_with_probs.push_back(std::make_pair(iter, disturbed_probs[iter]));
|
387 |
+
#else
|
388 |
+
// Use emplace_back for other compilers
|
389 |
+
disc_action_with_probs.emplace_back(std::make_pair(iter, disturbed_probs[iter]));
|
390 |
+
#endif
|
391 |
+
}
|
392 |
+
|
393 |
+
std::sort(disc_action_with_probs.begin(), disc_action_with_probs.end(), cmp);
|
394 |
+
|
395 |
+
// take the fist ``num_of_sampled_actions`` actions
|
396 |
+
for (int k = 0; k < num_of_sampled_actions; ++k)
|
397 |
+
{
|
398 |
+
sampled_actions.push_back(disc_action_with_probs[k].first);
|
399 |
+
// disc_action_with_probs[k].second is disturbed_probs
|
400 |
+
// sampled_actions_probs.push_back(disc_action_with_probs[k].second);
|
401 |
+
sampled_actions_probs.push_back(probs[disc_action_with_probs[k].first]);
|
402 |
+
|
403 |
+
// TODO(pu): logging
|
404 |
+
// std::cout << "sampled_actions[k]: " << sampled_actions[k] << std::endl;
|
405 |
+
// std::cout << "sampled_actions_probs[k]: " << sampled_actions_probs[k] << std::endl;
|
406 |
+
}
|
407 |
+
|
408 |
+
// TODO(pu): fixed k, only for debugging
|
409 |
+
// Take the first ``num_of_sampled_actions`` actions: k=0,1,...,K-1
|
410 |
+
// for (int k = 0; k < num_of_sampled_actions; ++k)
|
411 |
+
// {
|
412 |
+
// sampled_actions.push_back(k);
|
413 |
+
// // disc_action_with_probs[k].second is disturbed_probs
|
414 |
+
// // sampled_actions_probs.push_back(disc_action_with_probs[k].second);
|
415 |
+
// sampled_actions_probs.push_back(probs[k]);
|
416 |
+
// }
|
417 |
+
|
418 |
+
disturbed_probs.clear(); // Empty the collection to prepare for the next sampling.
|
419 |
+
disc_action_with_probs.clear(); // Empty the collection to prepare for the next sampling.
|
420 |
+
}
|
421 |
+
|
422 |
+
float prior;
|
423 |
+
for (int i = 0; i < this->num_of_sampled_actions; ++i)
|
424 |
+
{
|
425 |
+
|
426 |
+
if (this->continuous_action_space == true)
|
427 |
+
{
|
428 |
+
CAction action = CAction(sampled_actions_after_tanh[i], 0);
|
429 |
+
std::vector<CAction> legal_actions;
|
430 |
+
this->children[action.get_combined_hash()] = CNode(sampled_actions_log_probs_after_tanh[i], legal_actions, this->action_space_size, this->num_of_sampled_actions, this->continuous_action_space); // only for muzero/efficient zero, not support alphazero
|
431 |
+
this->legal_actions.push_back(action);
|
432 |
+
}
|
433 |
+
else
|
434 |
+
{
|
435 |
+
std::vector<float> sampled_action_tmp;
|
436 |
+
for (size_t iter = 0; iter < 1; iter++)
|
437 |
+
{
|
438 |
+
sampled_action_tmp.push_back(float(sampled_actions[i]));
|
439 |
+
}
|
440 |
+
CAction action = CAction(sampled_action_tmp, 0);
|
441 |
+
std::vector<CAction> legal_actions;
|
442 |
+
this->children[action.get_combined_hash()] = CNode(sampled_actions_probs[i], legal_actions, this->action_space_size, this->num_of_sampled_actions, this->continuous_action_space); // only for muzero/efficient zero, not support alphazero
|
443 |
+
this->legal_actions.push_back(action);
|
444 |
+
}
|
445 |
+
}
|
446 |
+
|
447 |
+
#ifdef _WIN32
|
448 |
+
// 释放数组内存
|
449 |
+
delete[] policy;
|
450 |
+
#else
|
451 |
+
#endif
|
452 |
+
}
|
453 |
+
|
454 |
+
void CNode::add_exploration_noise(float exploration_fraction, const std::vector<float> &noises)
|
455 |
+
{
|
456 |
+
/*
|
457 |
+
Overview:
|
458 |
+
Add a noise to the prior of the child nodes.
|
459 |
+
Arguments:
|
460 |
+
- exploration_fraction: the fraction to add noise.
|
461 |
+
- noises: the vector of noises added to each child node.
|
462 |
+
*/
|
463 |
+
float noise, prior;
|
464 |
+
for (int i = 0; i < this->num_of_sampled_actions; ++i)
|
465 |
+
{
|
466 |
+
|
467 |
+
noise = noises[i];
|
468 |
+
CNode *child = this->get_child(this->legal_actions[i]);
|
469 |
+
prior = child->prior;
|
470 |
+
if (this->continuous_action_space == true)
|
471 |
+
{
|
472 |
+
// if prior is log_prob
|
473 |
+
child->prior = log(exp(prior) * (1 - exploration_fraction) + noise * exploration_fraction + 1e-6);
|
474 |
+
}
|
475 |
+
else
|
476 |
+
{
|
477 |
+
// if prior is prob
|
478 |
+
child->prior = prior * (1 - exploration_fraction) + noise * exploration_fraction;
|
479 |
+
}
|
480 |
+
}
|
481 |
+
}
|
482 |
+
|
483 |
+
float CNode::compute_mean_q(int isRoot, float parent_q, float discount_factor)
|
484 |
+
{
|
485 |
+
/*
|
486 |
+
Overview:
|
487 |
+
Compute the mean q value of the current node.
|
488 |
+
Arguments:
|
489 |
+
- isRoot: whether the current node is a root node.
|
490 |
+
- parent_q: the q value of the parent node.
|
491 |
+
- discount_factor: the discount_factor of reward.
|
492 |
+
*/
|
493 |
+
float total_unsigned_q = 0.0;
|
494 |
+
int total_visits = 0;
|
495 |
+
float parent_value_prefix = this->value_prefix;
|
496 |
+
for (auto a : this->legal_actions)
|
497 |
+
{
|
498 |
+
CNode *child = this->get_child(a);
|
499 |
+
if (child->visit_count > 0)
|
500 |
+
{
|
501 |
+
float true_reward = child->value_prefix - parent_value_prefix;
|
502 |
+
if (this->is_reset == 1)
|
503 |
+
{
|
504 |
+
true_reward = child->value_prefix;
|
505 |
+
}
|
506 |
+
float qsa = true_reward + discount_factor * child->value();
|
507 |
+
total_unsigned_q += qsa;
|
508 |
+
total_visits += 1;
|
509 |
+
}
|
510 |
+
}
|
511 |
+
|
512 |
+
float mean_q = 0.0;
|
513 |
+
if (isRoot && total_visits > 0)
|
514 |
+
{
|
515 |
+
mean_q = (total_unsigned_q) / (total_visits);
|
516 |
+
}
|
517 |
+
else
|
518 |
+
{
|
519 |
+
mean_q = (parent_q + total_unsigned_q) / (total_visits + 1);
|
520 |
+
}
|
521 |
+
return mean_q;
|
522 |
+
}
|
523 |
+
|
524 |
+
void CNode::print_out()
|
525 |
+
{
|
526 |
+
return;
|
527 |
+
}
|
528 |
+
|
529 |
+
int CNode::expanded()
|
530 |
+
{
|
531 |
+
/*
|
532 |
+
Overview:
|
533 |
+
Return whether the current node is expanded.
|
534 |
+
*/
|
535 |
+
return this->children.size() > 0;
|
536 |
+
}
|
537 |
+
|
538 |
+
float CNode::value()
|
539 |
+
{
|
540 |
+
/*
|
541 |
+
Overview:
|
542 |
+
Return the real value of the current tree.
|
543 |
+
*/
|
544 |
+
float true_value = 0.0;
|
545 |
+
if (this->visit_count == 0)
|
546 |
+
{
|
547 |
+
return true_value;
|
548 |
+
}
|
549 |
+
else
|
550 |
+
{
|
551 |
+
true_value = this->value_sum / this->visit_count;
|
552 |
+
return true_value;
|
553 |
+
}
|
554 |
+
}
|
555 |
+
|
556 |
+
std::vector<std::vector<float> > CNode::get_trajectory()
|
557 |
+
{
|
558 |
+
/*
|
559 |
+
Overview:
|
560 |
+
Find the current best trajectory starts from the current node.
|
561 |
+
Outputs:
|
562 |
+
- traj: a vector of node index, which is the current best trajectory from this node.
|
563 |
+
*/
|
564 |
+
std::vector<CAction> traj;
|
565 |
+
|
566 |
+
CNode *node = this;
|
567 |
+
CAction best_action = node->best_action;
|
568 |
+
while (best_action.is_root_action != 1)
|
569 |
+
{
|
570 |
+
traj.push_back(best_action);
|
571 |
+
node = node->get_child(best_action);
|
572 |
+
best_action = node->best_action;
|
573 |
+
}
|
574 |
+
|
575 |
+
std::vector<std::vector<float> > traj_return;
|
576 |
+
for (int i = 0; i < traj.size(); ++i)
|
577 |
+
{
|
578 |
+
traj_return.push_back(traj[i].value);
|
579 |
+
}
|
580 |
+
return traj_return;
|
581 |
+
}
|
582 |
+
|
583 |
+
std::vector<int> CNode::get_children_distribution()
|
584 |
+
{
|
585 |
+
/*
|
586 |
+
Overview:
|
587 |
+
Get the distribution of child nodes in the format of visit_count.
|
588 |
+
Outputs:
|
589 |
+
- distribution: a vector of distribution of child nodes in the format of visit count (i.e. [1,3,0,2,5]).
|
590 |
+
*/
|
591 |
+
std::vector<int> distribution;
|
592 |
+
if (this->expanded())
|
593 |
+
{
|
594 |
+
for (auto a : this->legal_actions)
|
595 |
+
{
|
596 |
+
CNode *child = this->get_child(a);
|
597 |
+
distribution.push_back(child->visit_count);
|
598 |
+
}
|
599 |
+
}
|
600 |
+
return distribution;
|
601 |
+
}
|
602 |
+
|
603 |
+
CNode *CNode::get_child(CAction action)
|
604 |
+
{
|
605 |
+
/*
|
606 |
+
Overview:
|
607 |
+
Get the child node corresponding to the input action.
|
608 |
+
Arguments:
|
609 |
+
- action: the action to get child.
|
610 |
+
*/
|
611 |
+
return &(this->children[action.get_combined_hash()]);
|
612 |
+
// TODO(pu): no hash
|
613 |
+
// return &(this->children[action]);
|
614 |
+
// return &(this->children[action.value[0]]);
|
615 |
+
}
|
616 |
+
|
617 |
+
//*********************************************************
|
618 |
+
|
619 |
+
CRoots::CRoots()
|
620 |
+
{
|
621 |
+
this->root_num = 0;
|
622 |
+
this->num_of_sampled_actions = 20;
|
623 |
+
}
|
624 |
+
|
625 |
+
CRoots::CRoots(int root_num, std::vector<std::vector<float> > legal_actions_list, int action_space_size, int num_of_sampled_actions, bool continuous_action_space)
|
626 |
+
{
|
627 |
+
/*
|
628 |
+
Overview:
|
629 |
+
Initialization of CNode with root_num, legal_actions_list, action_space_size, num_of_sampled_actions, continuous_action_space.
|
630 |
+
Arguments:
|
631 |
+
- root_num: the number of the current root.
|
632 |
+
- legal_action_list: the vector of the legal action of this root.
|
633 |
+
- action_space_size: the size of action space of the current env.
|
634 |
+
- num_of_sampled_actions: the number of sampled actions, i.e. K in the Sampled MuZero papers.
|
635 |
+
- continuous_action_space: whether the action space is continous in current env.
|
636 |
+
*/
|
637 |
+
this->root_num = root_num;
|
638 |
+
this->legal_actions_list = legal_actions_list;
|
639 |
+
this->continuous_action_space = continuous_action_space;
|
640 |
+
|
641 |
+
// sampled related core code
|
642 |
+
this->num_of_sampled_actions = num_of_sampled_actions;
|
643 |
+
this->action_space_size = action_space_size;
|
644 |
+
|
645 |
+
for (int i = 0; i < this->root_num; ++i)
|
646 |
+
{
|
647 |
+
if (this->continuous_action_space == true and this->legal_actions_list[0][0] == -1)
|
648 |
+
{
|
649 |
+
// continous action space
|
650 |
+
std::vector<CAction> legal_actions;
|
651 |
+
this->roots.push_back(CNode(0, legal_actions, this->action_space_size, this->num_of_sampled_actions, this->continuous_action_space));
|
652 |
+
}
|
653 |
+
else if (this->continuous_action_space == false or this->legal_actions_list[0][0] == -1)
|
654 |
+
{
|
655 |
+
// sampled
|
656 |
+
// discrete action space without action mask
|
657 |
+
std::vector<CAction> legal_actions;
|
658 |
+
this->roots.push_back(CNode(0, legal_actions, this->action_space_size, this->num_of_sampled_actions, this->continuous_action_space));
|
659 |
+
}
|
660 |
+
|
661 |
+
else
|
662 |
+
{
|
663 |
+
// TODO(pu): discrete action space
|
664 |
+
std::vector<CAction> c_legal_actions;
|
665 |
+
for (int i = 0; i < this->legal_actions_list.size(); ++i)
|
666 |
+
{
|
667 |
+
CAction c_legal_action = CAction(legal_actions_list[i], 0);
|
668 |
+
c_legal_actions.push_back(c_legal_action);
|
669 |
+
}
|
670 |
+
this->roots.push_back(CNode(0, c_legal_actions, this->action_space_size, this->num_of_sampled_actions, this->continuous_action_space));
|
671 |
+
}
|
672 |
+
}
|
673 |
+
}
|
674 |
+
|
675 |
+
CRoots::~CRoots() {}
|
676 |
+
|
677 |
+
void CRoots::prepare(float root_noise_weight, const std::vector<std::vector<float> > &noises, const std::vector<float> &value_prefixs, const std::vector<std::vector<float> > &policies, std::vector<int> &to_play_batch)
|
678 |
+
{
|
679 |
+
/*
|
680 |
+
Overview:
|
681 |
+
Expand the roots and add noises.
|
682 |
+
Arguments:
|
683 |
+
- root_noise_weight: the exploration fraction of roots
|
684 |
+
- noises: the vector of noise add to the roots.
|
685 |
+
- value_prefixs: the vector of value prefixs of each root.
|
686 |
+
- policies: the vector of policy logits of each root.
|
687 |
+
- to_play_batch: the vector of the player side of each root.
|
688 |
+
*/
|
689 |
+
|
690 |
+
// sampled related core code
|
691 |
+
for (int i = 0; i < this->root_num; ++i)
|
692 |
+
{
|
693 |
+
this->roots[i].expand(to_play_batch[i], 0, i, value_prefixs[i], policies[i]);
|
694 |
+
this->roots[i].add_exploration_noise(root_noise_weight, noises[i]);
|
695 |
+
this->roots[i].visit_count += 1;
|
696 |
+
}
|
697 |
+
}
|
698 |
+
|
699 |
+
void CRoots::prepare_no_noise(const std::vector<float> &value_prefixs, const std::vector<std::vector<float> > &policies, std::vector<int> &to_play_batch)
|
700 |
+
{
|
701 |
+
/*
|
702 |
+
Overview:
|
703 |
+
Expand the roots without noise.
|
704 |
+
Arguments:
|
705 |
+
- value_prefixs: the vector of value prefixs of each root.
|
706 |
+
- policies: the vector of policy logits of each root.
|
707 |
+
- to_play_batch: the vector of the player side of each root.
|
708 |
+
*/
|
709 |
+
for (int i = 0; i < this->root_num; ++i)
|
710 |
+
{
|
711 |
+
this->roots[i].expand(to_play_batch[i], 0, i, value_prefixs[i], policies[i]);
|
712 |
+
|
713 |
+
this->roots[i].visit_count += 1;
|
714 |
+
}
|
715 |
+
}
|
716 |
+
|
717 |
+
void CRoots::clear()
|
718 |
+
{
|
719 |
+
this->roots.clear();
|
720 |
+
}
|
721 |
+
|
722 |
+
std::vector<std::vector<std::vector<float> > > CRoots::get_trajectories()
|
723 |
+
{
|
724 |
+
/*
|
725 |
+
Overview:
|
726 |
+
Find the current best trajectory starts from each root.
|
727 |
+
Outputs:
|
728 |
+
- traj: a vector of node index, which is the current best trajectory from each root.
|
729 |
+
*/
|
730 |
+
std::vector<std::vector<std::vector<float> > > trajs;
|
731 |
+
trajs.reserve(this->root_num);
|
732 |
+
|
733 |
+
for (int i = 0; i < this->root_num; ++i)
|
734 |
+
{
|
735 |
+
trajs.push_back(this->roots[i].get_trajectory());
|
736 |
+
}
|
737 |
+
return trajs;
|
738 |
+
}
|
739 |
+
|
740 |
+
std::vector<std::vector<int> > CRoots::get_distributions()
|
741 |
+
{
|
742 |
+
/*
|
743 |
+
Overview:
|
744 |
+
Get the children distribution of each root.
|
745 |
+
Outputs:
|
746 |
+
- distribution: a vector of distribution of child nodes in the format of visit count (i.e. [1,3,0,2,5]).
|
747 |
+
*/
|
748 |
+
std::vector<std::vector<int> > distributions;
|
749 |
+
distributions.reserve(this->root_num);
|
750 |
+
|
751 |
+
for (int i = 0; i < this->root_num; ++i)
|
752 |
+
{
|
753 |
+
distributions.push_back(this->roots[i].get_children_distribution());
|
754 |
+
}
|
755 |
+
return distributions;
|
756 |
+
}
|
757 |
+
|
758 |
+
// sampled related core code
|
759 |
+
std::vector<std::vector<std::vector<float> > > CRoots::get_sampled_actions()
|
760 |
+
{
|
761 |
+
/*
|
762 |
+
Overview:
|
763 |
+
Get the sampled_actions of each root.
|
764 |
+
Outputs:
|
765 |
+
- python_sampled_actions: a vector of sampled_actions for each root, e.g. the size of original action space is 6, the K=3,
|
766 |
+
python_sampled_actions = [[1,3,0], [2,4,0], [5,4,1]].
|
767 |
+
*/
|
768 |
+
std::vector<std::vector<CAction> > sampled_actions;
|
769 |
+
std::vector<std::vector<std::vector<float> > > python_sampled_actions;
|
770 |
+
|
771 |
+
// sampled_actions.reserve(this->root_num);
|
772 |
+
|
773 |
+
for (int i = 0; i < this->root_num; ++i)
|
774 |
+
{
|
775 |
+
std::vector<CAction> sampled_action;
|
776 |
+
sampled_action = this->roots[i].legal_actions;
|
777 |
+
std::vector<std::vector<float> > python_sampled_action;
|
778 |
+
|
779 |
+
for (int j = 0; j < this->roots[i].legal_actions.size(); ++j)
|
780 |
+
{
|
781 |
+
python_sampled_action.push_back(sampled_action[j].value);
|
782 |
+
}
|
783 |
+
python_sampled_actions.push_back(python_sampled_action);
|
784 |
+
}
|
785 |
+
|
786 |
+
return python_sampled_actions;
|
787 |
+
}
|
788 |
+
|
789 |
+
std::vector<float> CRoots::get_values()
|
790 |
+
{
|
791 |
+
/*
|
792 |
+
Overview:
|
793 |
+
Return the estimated value of each root.
|
794 |
+
*/
|
795 |
+
std::vector<float> values;
|
796 |
+
for (int i = 0; i < this->root_num; ++i)
|
797 |
+
{
|
798 |
+
values.push_back(this->roots[i].value());
|
799 |
+
}
|
800 |
+
return values;
|
801 |
+
}
|
802 |
+
|
803 |
+
//*********************************************************
|
804 |
+
//
|
805 |
+
void update_tree_q(CNode *root, tools::CMinMaxStats &min_max_stats, float discount_factor, int players)
|
806 |
+
{
|
807 |
+
/*
|
808 |
+
Overview:
|
809 |
+
Update the q value of the root and its child nodes.
|
810 |
+
Arguments:
|
811 |
+
- root: the root that update q value from.
|
812 |
+
- min_max_stats: a tool used to min-max normalize the q value.
|
813 |
+
- discount_factor: the discount factor of reward.
|
814 |
+
- players: the number of players.
|
815 |
+
*/
|
816 |
+
std::stack<CNode *> node_stack;
|
817 |
+
node_stack.push(root);
|
818 |
+
float parent_value_prefix = 0.0;
|
819 |
+
int is_reset = 0;
|
820 |
+
while (node_stack.size() > 0)
|
821 |
+
{
|
822 |
+
CNode *node = node_stack.top();
|
823 |
+
node_stack.pop();
|
824 |
+
|
825 |
+
if (node != root)
|
826 |
+
{
|
827 |
+
// NOTE: in self-play-mode, value_prefix is not calculated according to the perspective of current player of node,
|
828 |
+
// but treated as 1 player, just for obtaining the true reward in the perspective of current player of node.
|
829 |
+
// true_reward = node.value_prefix - (- parent_value_prefix)
|
830 |
+
float true_reward = node->value_prefix - node->parent_value_prefix;
|
831 |
+
|
832 |
+
if (is_reset == 1)
|
833 |
+
{
|
834 |
+
true_reward = node->value_prefix;
|
835 |
+
}
|
836 |
+
float qsa;
|
837 |
+
if (players == 1)
|
838 |
+
qsa = true_reward + discount_factor * node->value();
|
839 |
+
else if (players == 2)
|
840 |
+
// TODO(pu): why only the last reward multiply the discount_factor?
|
841 |
+
qsa = true_reward + discount_factor * (-1) * node->value();
|
842 |
+
|
843 |
+
min_max_stats.update(qsa);
|
844 |
+
}
|
845 |
+
|
846 |
+
for (auto a : node->legal_actions)
|
847 |
+
{
|
848 |
+
CNode *child = node->get_child(a);
|
849 |
+
if (child->expanded())
|
850 |
+
{
|
851 |
+
child->parent_value_prefix = node->value_prefix;
|
852 |
+
node_stack.push(child);
|
853 |
+
}
|
854 |
+
}
|
855 |
+
|
856 |
+
is_reset = node->is_reset;
|
857 |
+
}
|
858 |
+
}
|
859 |
+
|
860 |
+
void cbackpropagate(std::vector<CNode *> &search_path, tools::CMinMaxStats &min_max_stats, int to_play, float value, float discount_factor)
|
861 |
+
{
|
862 |
+
/*
|
863 |
+
Overview:
|
864 |
+
Update the value sum and visit count of nodes along the search path.
|
865 |
+
Arguments:
|
866 |
+
- search_path: a vector of nodes on the search path.
|
867 |
+
- min_max_stats: a tool used to min-max normalize the q value.
|
868 |
+
- to_play: which player to play the game in the current node.
|
869 |
+
- value: the value to propagate along the search path.
|
870 |
+
- discount_factor: the discount factor of reward.
|
871 |
+
*/
|
872 |
+
assert(to_play == -1 || to_play == 1 || to_play == 2);
|
873 |
+
if (to_play == -1)
|
874 |
+
{
|
875 |
+
// for play-with-bot-mode
|
876 |
+
float bootstrap_value = value;
|
877 |
+
int path_len = search_path.size();
|
878 |
+
for (int i = path_len - 1; i >= 0; --i)
|
879 |
+
{
|
880 |
+
CNode *node = search_path[i];
|
881 |
+
node->value_sum += bootstrap_value;
|
882 |
+
node->visit_count += 1;
|
883 |
+
|
884 |
+
float parent_value_prefix = 0.0;
|
885 |
+
int is_reset = 0;
|
886 |
+
if (i >= 1)
|
887 |
+
{
|
888 |
+
CNode *parent = search_path[i - 1];
|
889 |
+
parent_value_prefix = parent->value_prefix;
|
890 |
+
is_reset = parent->is_reset;
|
891 |
+
}
|
892 |
+
|
893 |
+
float true_reward = node->value_prefix - parent_value_prefix;
|
894 |
+
min_max_stats.update(true_reward + discount_factor * node->value());
|
895 |
+
|
896 |
+
if (is_reset == 1)
|
897 |
+
{
|
898 |
+
// parent is reset.
|
899 |
+
true_reward = node->value_prefix;
|
900 |
+
}
|
901 |
+
|
902 |
+
bootstrap_value = true_reward + discount_factor * bootstrap_value;
|
903 |
+
}
|
904 |
+
}
|
905 |
+
else
|
906 |
+
{
|
907 |
+
// for self-play-mode
|
908 |
+
float bootstrap_value = value;
|
909 |
+
int path_len = search_path.size();
|
910 |
+
for (int i = path_len - 1; i >= 0; --i)
|
911 |
+
{
|
912 |
+
CNode *node = search_path[i];
|
913 |
+
if (node->to_play == to_play)
|
914 |
+
node->value_sum += bootstrap_value;
|
915 |
+
else
|
916 |
+
node->value_sum += -bootstrap_value;
|
917 |
+
node->visit_count += 1;
|
918 |
+
|
919 |
+
float parent_value_prefix = 0.0;
|
920 |
+
int is_reset = 0;
|
921 |
+
if (i >= 1)
|
922 |
+
{
|
923 |
+
CNode *parent = search_path[i - 1];
|
924 |
+
parent_value_prefix = parent->value_prefix;
|
925 |
+
is_reset = parent->is_reset;
|
926 |
+
}
|
927 |
+
|
928 |
+
// NOTE: in self-play-mode, value_prefix is not calculated according to the perspective of current player of node,
|
929 |
+
// but treated as 1 player, just for obtaining the true reward in the perspective of current player of node.
|
930 |
+
float true_reward = node->value_prefix - parent_value_prefix;
|
931 |
+
|
932 |
+
min_max_stats.update(true_reward + discount_factor * node->value());
|
933 |
+
|
934 |
+
if (is_reset == 1)
|
935 |
+
{
|
936 |
+
// parent is reset.
|
937 |
+
true_reward = node->value_prefix;
|
938 |
+
}
|
939 |
+
if (node->to_play == to_play)
|
940 |
+
bootstrap_value = -true_reward + discount_factor * bootstrap_value;
|
941 |
+
else
|
942 |
+
bootstrap_value = true_reward + discount_factor * bootstrap_value;
|
943 |
+
}
|
944 |
+
}
|
945 |
+
}
|
946 |
+
|
947 |
+
void cbatch_backpropagate(int current_latent_state_index, float discount_factor, const std::vector<float> &value_prefixs, const std::vector<float> &values, const std::vector<std::vector<float> > &policies, tools::CMinMaxStatsList *min_max_stats_lst, CSearchResults &results, std::vector<int> is_reset_list, std::vector<int> &to_play_batch)
|
948 |
+
{
|
949 |
+
/*
|
950 |
+
Overview:
|
951 |
+
Expand the nodes along the search path and update the infos.
|
952 |
+
Arguments:
|
953 |
+
- current_latent_state_index: The index of latent state of the leaf node in the search path.
|
954 |
+
- discount_factor: the discount factor of reward.
|
955 |
+
- value_prefixs: the value prefixs of nodes along the search path.
|
956 |
+
- values: the values to propagate along the search path.
|
957 |
+
- policies: the policy logits of nodes along the search path.
|
958 |
+
- min_max_stats: a tool used to min-max normalize the q value.
|
959 |
+
- results: the search results.
|
960 |
+
- is_reset_list: the vector of is_reset nodes along the search path, where is_reset represents for whether the parent value prefix needs to be reset.
|
961 |
+
- to_play_batch: the batch of which player is playing on this node.
|
962 |
+
*/
|
963 |
+
for (int i = 0; i < results.num; ++i)
|
964 |
+
{
|
965 |
+
results.nodes[i]->expand(to_play_batch[i], current_latent_state_index, i, value_prefixs[i], policies[i]);
|
966 |
+
// reset
|
967 |
+
results.nodes[i]->is_reset = is_reset_list[i];
|
968 |
+
|
969 |
+
cbackpropagate(results.search_paths[i], min_max_stats_lst->stats_lst[i], to_play_batch[i], values[i], discount_factor);
|
970 |
+
}
|
971 |
+
}
|
972 |
+
|
973 |
+
CAction cselect_child(CNode *root, tools::CMinMaxStats &min_max_stats, int pb_c_base, float pb_c_init, float discount_factor, float mean_q, int players, bool continuous_action_space)
|
974 |
+
{
|
975 |
+
/*
|
976 |
+
Overview:
|
977 |
+
Select the child node of the roots according to ucb scores.
|
978 |
+
Arguments:
|
979 |
+
- root: the roots to select the child node.
|
980 |
+
- min_max_stats: a tool used to min-max normalize the score.
|
981 |
+
- pb_c_base: constants c2 in muzero.
|
982 |
+
- pb_c_init: constants c1 in muzero.
|
983 |
+
- disount_factor: the discount factor of reward.
|
984 |
+
- mean_q: the mean q value of the parent node.
|
985 |
+
- players: the number of players.
|
986 |
+
- continuous_action_space: whether the action space is continous in current env.
|
987 |
+
Outputs:
|
988 |
+
- action: the action to select.
|
989 |
+
*/
|
990 |
+
// sampled related core code
|
991 |
+
// TODO(pu): Progressive widening (See https://hal.archives-ouvertes.fr/hal-00542673v2/document)
|
992 |
+
float max_score = FLOAT_MIN;
|
993 |
+
const float epsilon = 0.000001;
|
994 |
+
std::vector<CAction> max_index_lst;
|
995 |
+
for (auto a : root->legal_actions)
|
996 |
+
{
|
997 |
+
|
998 |
+
CNode *child = root->get_child(a);
|
999 |
+
// sampled related core code
|
1000 |
+
float temp_score = cucb_score(root, child, min_max_stats, mean_q, root->is_reset, root->visit_count - 1, root->value_prefix, pb_c_base, pb_c_init, discount_factor, players, continuous_action_space);
|
1001 |
+
|
1002 |
+
if (max_score < temp_score)
|
1003 |
+
{
|
1004 |
+
max_score = temp_score;
|
1005 |
+
|
1006 |
+
max_index_lst.clear();
|
1007 |
+
max_index_lst.push_back(a);
|
1008 |
+
}
|
1009 |
+
else if (temp_score >= max_score - epsilon)
|
1010 |
+
{
|
1011 |
+
max_index_lst.push_back(a);
|
1012 |
+
}
|
1013 |
+
}
|
1014 |
+
|
1015 |
+
// python code: int action = 0;
|
1016 |
+
CAction action;
|
1017 |
+
if (max_index_lst.size() > 0)
|
1018 |
+
{
|
1019 |
+
int rand_index = rand() % max_index_lst.size();
|
1020 |
+
action = max_index_lst[rand_index];
|
1021 |
+
}
|
1022 |
+
return action;
|
1023 |
+
}
|
1024 |
+
|
1025 |
+
// sampled related core code
|
1026 |
+
float cucb_score(CNode *parent, CNode *child, tools::CMinMaxStats &min_max_stats, float parent_mean_q, int is_reset, float total_children_visit_counts, float parent_value_prefix, float pb_c_base, float pb_c_init, float discount_factor, int players, bool continuous_action_space)
|
1027 |
+
{
|
1028 |
+
/*
|
1029 |
+
Overview:
|
1030 |
+
Compute the ucb score of the child.
|
1031 |
+
Arguments:
|
1032 |
+
- child: the child node to compute ucb score.
|
1033 |
+
- min_max_stats: a tool used to min-max normalize the score.
|
1034 |
+
- parent_mean_q: the mean q value of the parent node.
|
1035 |
+
- is_reset: whether the value prefix needs to be reset.
|
1036 |
+
- total_children_visit_counts: the total visit counts of the child nodes of the parent node.
|
1037 |
+
- parent_value_prefix: the value prefix of parent node.
|
1038 |
+
- pb_c_base: constants c2 in muzero.
|
1039 |
+
- pb_c_init: constants c1 in muzero.
|
1040 |
+
- disount_factor: the discount factor of reward.
|
1041 |
+
- players: the number of players.
|
1042 |
+
- continuous_action_space: whether the action space is continous in current env.
|
1043 |
+
Outputs:
|
1044 |
+
- ucb_value: the ucb score of the child.
|
1045 |
+
*/
|
1046 |
+
float pb_c = 0.0, prior_score = 0.0, value_score = 0.0;
|
1047 |
+
pb_c = log((total_children_visit_counts + pb_c_base + 1) / pb_c_base) + pb_c_init;
|
1048 |
+
pb_c *= (sqrt(total_children_visit_counts) / (child->visit_count + 1));
|
1049 |
+
|
1050 |
+
// prior_score = pb_c * child->prior;
|
1051 |
+
|
1052 |
+
// sampled related core code
|
1053 |
+
// TODO(pu): empirical distribution
|
1054 |
+
std::string empirical_distribution_type = "density";
|
1055 |
+
if (empirical_distribution_type.compare("density"))
|
1056 |
+
{
|
1057 |
+
if (continuous_action_space == true)
|
1058 |
+
{
|
1059 |
+
float empirical_prob_sum = 0;
|
1060 |
+
for (int i = 0; i < parent->children.size(); ++i)
|
1061 |
+
{
|
1062 |
+
empirical_prob_sum += exp(parent->get_child(parent->legal_actions[i])->prior);
|
1063 |
+
}
|
1064 |
+
prior_score = pb_c * exp(child->prior) / (empirical_prob_sum + 1e-6);
|
1065 |
+
}
|
1066 |
+
else
|
1067 |
+
{
|
1068 |
+
float empirical_prob_sum = 0;
|
1069 |
+
for (int i = 0; i < parent->children.size(); ++i)
|
1070 |
+
{
|
1071 |
+
empirical_prob_sum += parent->get_child(parent->legal_actions[i])->prior;
|
1072 |
+
}
|
1073 |
+
prior_score = pb_c * child->prior / (empirical_prob_sum + 1e-6);
|
1074 |
+
}
|
1075 |
+
}
|
1076 |
+
else if (empirical_distribution_type.compare("uniform"))
|
1077 |
+
{
|
1078 |
+
prior_score = pb_c * 1 / parent->children.size();
|
1079 |
+
}
|
1080 |
+
// sampled related core code
|
1081 |
+
if (child->visit_count == 0)
|
1082 |
+
{
|
1083 |
+
value_score = parent_mean_q;
|
1084 |
+
}
|
1085 |
+
else
|
1086 |
+
{
|
1087 |
+
float true_reward = child->value_prefix - parent_value_prefix;
|
1088 |
+
if (is_reset == 1)
|
1089 |
+
{
|
1090 |
+
true_reward = child->value_prefix;
|
1091 |
+
}
|
1092 |
+
|
1093 |
+
if (players == 1)
|
1094 |
+
value_score = true_reward + discount_factor * child->value();
|
1095 |
+
else if (players == 2)
|
1096 |
+
value_score = true_reward + discount_factor * (-child->value());
|
1097 |
+
}
|
1098 |
+
|
1099 |
+
value_score = min_max_stats.normalize(value_score);
|
1100 |
+
|
1101 |
+
if (value_score < 0)
|
1102 |
+
value_score = 0;
|
1103 |
+
if (value_score > 1)
|
1104 |
+
value_score = 1;
|
1105 |
+
|
1106 |
+
float ucb_value = prior_score + value_score;
|
1107 |
+
return ucb_value;
|
1108 |
+
}
|
1109 |
+
|
1110 |
+
void cbatch_traverse(CRoots *roots, int pb_c_base, float pb_c_init, float discount_factor, tools::CMinMaxStatsList *min_max_stats_lst, CSearchResults &results, std::vector<int> &virtual_to_play_batch, bool continuous_action_space)
|
1111 |
+
{
|
1112 |
+
/*
|
1113 |
+
Overview:
|
1114 |
+
Search node path from the roots.
|
1115 |
+
Arguments:
|
1116 |
+
- roots: the roots that search from.
|
1117 |
+
- pb_c_base: constants c2 in muzero.
|
1118 |
+
- pb_c_init: constants c1 in muzero.
|
1119 |
+
- disount_factor: the discount factor of reward.
|
1120 |
+
- min_max_stats: a tool used to min-max normalize the score.
|
1121 |
+
- results: the search results.
|
1122 |
+
- virtual_to_play_batch: the batch of which player is playing on this node.
|
1123 |
+
- continuous_action_space: whether the action space is continous in current env.
|
1124 |
+
*/
|
1125 |
+
// set seed
|
1126 |
+
get_time_and_set_rand_seed();
|
1127 |
+
|
1128 |
+
std::vector<float> null_value;
|
1129 |
+
for (int i = 0; i < 1; ++i)
|
1130 |
+
{
|
1131 |
+
null_value.push_back(i + 0.1);
|
1132 |
+
}
|
1133 |
+
// CAction last_action = CAction(null_value, 1);
|
1134 |
+
std::vector<float> last_action;
|
1135 |
+
float parent_q = 0.0;
|
1136 |
+
results.search_lens = std::vector<int>();
|
1137 |
+
|
1138 |
+
int players = 0;
|
1139 |
+
int largest_element = *max_element(virtual_to_play_batch.begin(), virtual_to_play_batch.end()); // 0 or 2
|
1140 |
+
if (largest_element == -1)
|
1141 |
+
players = 1;
|
1142 |
+
else
|
1143 |
+
players = 2;
|
1144 |
+
|
1145 |
+
for (int i = 0; i < results.num; ++i)
|
1146 |
+
{
|
1147 |
+
CNode *node = &(roots->roots[i]);
|
1148 |
+
int is_root = 1;
|
1149 |
+
int search_len = 0;
|
1150 |
+
results.search_paths[i].push_back(node);
|
1151 |
+
|
1152 |
+
while (node->expanded())
|
1153 |
+
{
|
1154 |
+
float mean_q = node->compute_mean_q(is_root, parent_q, discount_factor);
|
1155 |
+
is_root = 0;
|
1156 |
+
parent_q = mean_q;
|
1157 |
+
|
1158 |
+
CAction action = cselect_child(node, min_max_stats_lst->stats_lst[i], pb_c_base, pb_c_init, discount_factor, mean_q, players, continuous_action_space);
|
1159 |
+
if (players > 1)
|
1160 |
+
{
|
1161 |
+
assert(virtual_to_play_batch[i] == 1 || virtual_to_play_batch[i] == 2);
|
1162 |
+
if (virtual_to_play_batch[i] == 1)
|
1163 |
+
virtual_to_play_batch[i] = 2;
|
1164 |
+
else
|
1165 |
+
virtual_to_play_batch[i] = 1;
|
1166 |
+
}
|
1167 |
+
|
1168 |
+
node->best_action = action; // CAction
|
1169 |
+
// next
|
1170 |
+
node = node->get_child(action);
|
1171 |
+
last_action = action.value;
|
1172 |
+
|
1173 |
+
results.search_paths[i].push_back(node);
|
1174 |
+
search_len += 1;
|
1175 |
+
}
|
1176 |
+
|
1177 |
+
CNode *parent = results.search_paths[i][results.search_paths[i].size() - 2];
|
1178 |
+
|
1179 |
+
results.latent_state_index_in_search_path.push_back(parent->current_latent_state_index);
|
1180 |
+
results.latent_state_index_in_batch.push_back(parent->batch_index);
|
1181 |
+
|
1182 |
+
results.last_actions.push_back(last_action);
|
1183 |
+
results.search_lens.push_back(search_len);
|
1184 |
+
results.nodes.push_back(node);
|
1185 |
+
results.virtual_to_play_batchs.push_back(virtual_to_play_batch[i]);
|
1186 |
+
}
|
1187 |
+
}
|
1188 |
+
|
1189 |
+
}
|
LightZero/lzero/mcts/ctree/ctree_sampled_efficientzero/lib/cnode.h
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// C++11
|
2 |
+
|
3 |
+
#ifndef CNODE_H
|
4 |
+
#define CNODE_H
|
5 |
+
|
6 |
+
#include "../../common_lib/cminimax.h"
|
7 |
+
#include <math.h>
|
8 |
+
#include <vector>
|
9 |
+
#include <stack>
|
10 |
+
#include <stdlib.h>
|
11 |
+
#include <time.h>
|
12 |
+
#include <cmath>
|
13 |
+
#include <sys/timeb.h>
|
14 |
+
#include <time.h>
|
15 |
+
#include <map>
|
16 |
+
|
17 |
+
const int DEBUG_MODE = 0;
|
18 |
+
|
19 |
+
namespace tree
|
20 |
+
{
|
21 |
+
// sampled related core code
|
22 |
+
class CAction
|
23 |
+
{
|
24 |
+
public:
|
25 |
+
std::vector<float> value;
|
26 |
+
std::vector<size_t> hash;
|
27 |
+
int is_root_action;
|
28 |
+
|
29 |
+
CAction();
|
30 |
+
CAction(std::vector<float> value, int is_root_action);
|
31 |
+
~CAction();
|
32 |
+
|
33 |
+
std::vector<size_t> get_hash(void);
|
34 |
+
std::size_t get_combined_hash(void);
|
35 |
+
};
|
36 |
+
|
37 |
+
class CNode
|
38 |
+
{
|
39 |
+
public:
|
40 |
+
int visit_count, to_play, current_latent_state_index, batch_index, is_reset, action_space_size;
|
41 |
+
// sampled related core code
|
42 |
+
CAction best_action;
|
43 |
+
int num_of_sampled_actions;
|
44 |
+
float value_prefix, prior, value_sum;
|
45 |
+
float parent_value_prefix;
|
46 |
+
bool continuous_action_space;
|
47 |
+
std::vector<int> children_index;
|
48 |
+
std::map<size_t, CNode> children;
|
49 |
+
|
50 |
+
std::vector<CAction> legal_actions;
|
51 |
+
|
52 |
+
CNode();
|
53 |
+
// sampled related core code
|
54 |
+
CNode(float prior, std::vector<CAction> &legal_actions, int action_space_size, int num_of_sampled_actions, bool continuous_action_space);
|
55 |
+
~CNode();
|
56 |
+
|
57 |
+
void expand(int to_play, int current_latent_state_index, int batch_index, float value_prefix, const std::vector<float> &policy_logits);
|
58 |
+
void add_exploration_noise(float exploration_fraction, const std::vector<float> &noises);
|
59 |
+
float compute_mean_q(int isRoot, float parent_q, float discount_factor);
|
60 |
+
void print_out();
|
61 |
+
|
62 |
+
int expanded();
|
63 |
+
|
64 |
+
float value();
|
65 |
+
|
66 |
+
// sampled related core code
|
67 |
+
std::vector<std::vector<float> > get_trajectory();
|
68 |
+
std::vector<int> get_children_distribution();
|
69 |
+
CNode *get_child(CAction action);
|
70 |
+
};
|
71 |
+
|
72 |
+
class CRoots
|
73 |
+
{
|
74 |
+
public:
|
75 |
+
int root_num;
|
76 |
+
int num_of_sampled_actions;
|
77 |
+
int action_space_size;
|
78 |
+
std::vector<CNode> roots;
|
79 |
+
std::vector<std::vector<float> > legal_actions_list;
|
80 |
+
bool continuous_action_space;
|
81 |
+
|
82 |
+
CRoots();
|
83 |
+
CRoots(int root_num, std::vector<std::vector<float> > legal_actions_list, int action_space_size, int num_of_sampled_actions, bool continuous_action_space);
|
84 |
+
~CRoots();
|
85 |
+
|
86 |
+
void prepare(float root_noise_weight, const std::vector<std::vector<float> > &noises, const std::vector<float> &value_prefixs, const std::vector<std::vector<float> > &policies, std::vector<int> &to_play_batch);
|
87 |
+
void prepare_no_noise(const std::vector<float> &value_prefixs, const std::vector<std::vector<float> > &policies, std::vector<int> &to_play_batch);
|
88 |
+
void clear();
|
89 |
+
// sampled related core code
|
90 |
+
std::vector<std::vector<std::vector<float> > > get_trajectories();
|
91 |
+
std::vector<std::vector<std::vector<float> > > get_sampled_actions();
|
92 |
+
|
93 |
+
std::vector<std::vector<int> > get_distributions();
|
94 |
+
|
95 |
+
std::vector<float> get_values();
|
96 |
+
};
|
97 |
+
|
98 |
+
class CSearchResults
|
99 |
+
{
|
100 |
+
public:
|
101 |
+
int num;
|
102 |
+
std::vector<int> latent_state_index_in_search_path, latent_state_index_in_batch, search_lens;
|
103 |
+
std::vector<int> virtual_to_play_batchs;
|
104 |
+
std::vector<std::vector<float> > last_actions;
|
105 |
+
|
106 |
+
std::vector<CNode *> nodes;
|
107 |
+
std::vector<std::vector<CNode *> > search_paths;
|
108 |
+
|
109 |
+
CSearchResults();
|
110 |
+
CSearchResults(int num);
|
111 |
+
~CSearchResults();
|
112 |
+
};
|
113 |
+
|
114 |
+
//*********************************************************
|
115 |
+
void update_tree_q(CNode *root, tools::CMinMaxStats &min_max_stats, float discount_factor, int players);
|
116 |
+
void cbackpropagate(std::vector<CNode *> &search_path, tools::CMinMaxStats &min_max_stats, int to_play, float value, float discount_factor);
|
117 |
+
void cbatch_backpropagate(int current_latent_state_index, float discount_factor, const std::vector<float> &value_prefixs, const std::vector<float> &values, const std::vector<std::vector<float> > &policies, tools::CMinMaxStatsList *min_max_stats_lst, CSearchResults &results, std::vector<int> is_reset_list, std::vector<int> &to_play_batch);
|
118 |
+
CAction cselect_child(CNode *root, tools::CMinMaxStats &min_max_stats, int pb_c_base, float pb_c_init, float discount_factor, float mean_q, int players, bool continuous_action_space);
|
119 |
+
float cucb_score(CNode *parent, CNode *child, tools::CMinMaxStats &min_max_stats, float parent_mean_q, int is_reset, float total_children_visit_counts, float parent_value_prefix, float pb_c_base, float pb_c_init, float discount_factor, int players, bool continuous_action_space);
|
120 |
+
void cbatch_traverse(CRoots *roots, int pb_c_base, float pb_c_init, float discount_factor, tools::CMinMaxStatsList *min_max_stats_lst, CSearchResults &results, std::vector<int> &virtual_to_play_batch, bool continuous_action_space);
|
121 |
+
}
|
122 |
+
|
123 |
+
#endif
|
LightZero/lzero/mcts/ctree/ctree_stochastic_muzero/lib/cnode.cpp
ADDED
@@ -0,0 +1,787 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// C++11
|
2 |
+
|
3 |
+
#include <iostream>
|
4 |
+
#include "cnode.h"
|
5 |
+
#include <algorithm>
|
6 |
+
#include <map>
|
7 |
+
#include <cassert>
|
8 |
+
#include <numeric>
|
9 |
+
#include <iostream>
|
10 |
+
#include <vector>
|
11 |
+
#include <map>
|
12 |
+
#include <random>
|
13 |
+
#include <algorithm>
|
14 |
+
#include <iterator>
|
15 |
+
|
16 |
+
#ifdef _WIN32
|
17 |
+
#include "..\..\common_lib\utils.cpp"
|
18 |
+
#else
|
19 |
+
#include "../../common_lib/utils.cpp"
|
20 |
+
#endif
|
21 |
+
|
22 |
+
|
23 |
+
namespace tree
|
24 |
+
{
|
25 |
+
|
26 |
+
CSearchResults::CSearchResults()
|
27 |
+
{
|
28 |
+
/*
|
29 |
+
Overview:
|
30 |
+
Initialization of CSearchResults, the default result number is set to 0.
|
31 |
+
*/
|
32 |
+
this->num = 0;
|
33 |
+
}
|
34 |
+
|
35 |
+
CSearchResults::CSearchResults(int num)
|
36 |
+
{
|
37 |
+
/*
|
38 |
+
Overview:
|
39 |
+
Initialization of CSearchResults with result number.
|
40 |
+
*/
|
41 |
+
this->num = num;
|
42 |
+
for (int i = 0; i < num; ++i)
|
43 |
+
{
|
44 |
+
this->search_paths.push_back(std::vector<CNode *>());
|
45 |
+
}
|
46 |
+
}
|
47 |
+
|
48 |
+
CSearchResults::~CSearchResults() {}
|
49 |
+
|
50 |
+
//*********************************************************
|
51 |
+
|
52 |
+
CNode::CNode()
|
53 |
+
{
|
54 |
+
/*
|
55 |
+
Overview:
|
56 |
+
Initialization of CNode.
|
57 |
+
*/
|
58 |
+
this->prior = 0;
|
59 |
+
this->legal_actions = legal_actions;
|
60 |
+
|
61 |
+
this->visit_count = 0;
|
62 |
+
this->value_sum = 0;
|
63 |
+
this->best_action = -1;
|
64 |
+
this->to_play = 0;
|
65 |
+
this->reward = 0.0;
|
66 |
+
this->is_chance = false;
|
67 |
+
this->chance_space_size= 2;
|
68 |
+
|
69 |
+
}
|
70 |
+
|
71 |
+
CNode::CNode(float prior, std::vector<int> &legal_actions, bool is_chance, int chance_space_size)
|
72 |
+
{
|
73 |
+
/*
|
74 |
+
Overview:
|
75 |
+
Initialization of CNode with prior value and legal actions.
|
76 |
+
Arguments:
|
77 |
+
- prior: the prior value of this node.
|
78 |
+
- legal_actions: a vector of legal actions of this node.
|
79 |
+
*/
|
80 |
+
this->prior = prior;
|
81 |
+
this->legal_actions = legal_actions;
|
82 |
+
|
83 |
+
this->visit_count = 0;
|
84 |
+
this->value_sum = 0;
|
85 |
+
this->best_action = -1;
|
86 |
+
this->to_play = 0;
|
87 |
+
this->current_latent_state_index = -1;
|
88 |
+
this->batch_index = -1;
|
89 |
+
this->is_chance = is_chance;
|
90 |
+
this->chance_space_size = chance_space_size;
|
91 |
+
}
|
92 |
+
|
93 |
+
CNode::~CNode() {}
|
94 |
+
|
95 |
+
void CNode::expand(int to_play, int current_latent_state_index, int batch_index, float reward, const std::vector<float> &policy_logits, bool child_is_chance)
|
96 |
+
{
|
97 |
+
/*
|
98 |
+
Overview:
|
99 |
+
Expand the child nodes of the current node.
|
100 |
+
Arguments:
|
101 |
+
- to_play: which player to play the game in the current node.
|
102 |
+
- current_latent_state_index: The index of latent state of the leaf node in the search path of the current node.
|
103 |
+
- batch_index: The index of latent state of the leaf node in the search path of the current node.
|
104 |
+
- reward: the reward of the current node.
|
105 |
+
- policy_logits: the logit of the child nodes.
|
106 |
+
*/
|
107 |
+
this->to_play = to_play;
|
108 |
+
this->current_latent_state_index = current_latent_state_index;
|
109 |
+
this->batch_index = batch_index;
|
110 |
+
this->reward = reward;
|
111 |
+
|
112 |
+
|
113 |
+
// assert((this->is_chance != child_is_chance) && "is_chance and child_is_chance should be different");
|
114 |
+
|
115 |
+
if(this->is_chance == true){
|
116 |
+
child_is_chance = false;
|
117 |
+
this->reward = 0.0;
|
118 |
+
}
|
119 |
+
else{
|
120 |
+
child_is_chance = true;
|
121 |
+
}
|
122 |
+
|
123 |
+
int action_num = policy_logits.size();
|
124 |
+
if (this->legal_actions.size() == 0)
|
125 |
+
{
|
126 |
+
for (int i = 0; i < action_num; ++i)
|
127 |
+
{
|
128 |
+
this->legal_actions.push_back(i);
|
129 |
+
}
|
130 |
+
}
|
131 |
+
|
132 |
+
float temp_policy;
|
133 |
+
float policy_sum = 0.0;
|
134 |
+
|
135 |
+
#ifdef _WIN32
|
136 |
+
// 创建动态数组
|
137 |
+
float* policy = new float[action_num];
|
138 |
+
#else
|
139 |
+
float policy[action_num];
|
140 |
+
#endif
|
141 |
+
|
142 |
+
float policy_max = FLOAT_MIN;
|
143 |
+
for (auto a : this->legal_actions)
|
144 |
+
{
|
145 |
+
if (policy_max < policy_logits[a])
|
146 |
+
{
|
147 |
+
policy_max = policy_logits[a];
|
148 |
+
}
|
149 |
+
}
|
150 |
+
|
151 |
+
for (auto a : this->legal_actions)
|
152 |
+
{
|
153 |
+
temp_policy = exp(policy_logits[a] - policy_max);
|
154 |
+
policy_sum += temp_policy;
|
155 |
+
policy[a] = temp_policy;
|
156 |
+
}
|
157 |
+
|
158 |
+
float prior;
|
159 |
+
for (auto a : this->legal_actions)
|
160 |
+
{
|
161 |
+
prior = policy[a] / policy_sum;
|
162 |
+
std::vector<int> tmp_empty;
|
163 |
+
this->children[a] = CNode(prior, tmp_empty, child_is_chance, this->chance_space_size); // only for muzero/efficient zero, not support alphazero
|
164 |
+
// this->children[a] = CNode(prior, tmp_empty, is_chance = child_is_chance); // only for muzero/efficient zero, not support alphazero
|
165 |
+
}
|
166 |
+
|
167 |
+
#ifdef _WIN32
|
168 |
+
// 释放数组内存
|
169 |
+
delete[] policy;
|
170 |
+
#else
|
171 |
+
#endif
|
172 |
+
}
|
173 |
+
|
174 |
+
void CNode::add_exploration_noise(float exploration_fraction, const std::vector<float> &noises)
|
175 |
+
{
|
176 |
+
/*
|
177 |
+
Overview:
|
178 |
+
Add a noise to the prior of the child nodes.
|
179 |
+
Arguments:
|
180 |
+
- exploration_fraction: the fraction to add noise.
|
181 |
+
- noises: the vector of noises added to each child node.
|
182 |
+
*/
|
183 |
+
float noise, prior;
|
184 |
+
for (int i = 0; i < this->legal_actions.size(); ++i)
|
185 |
+
{
|
186 |
+
noise = noises[i];
|
187 |
+
CNode *child = this->get_child(this->legal_actions[i]);
|
188 |
+
|
189 |
+
prior = child->prior;
|
190 |
+
child->prior = prior * (1 - exploration_fraction) + noise * exploration_fraction;
|
191 |
+
}
|
192 |
+
}
|
193 |
+
|
194 |
+
float CNode::compute_mean_q(int isRoot, float parent_q, float discount_factor)
|
195 |
+
{
|
196 |
+
/*
|
197 |
+
Overview:
|
198 |
+
Compute the mean q value of the current node.
|
199 |
+
Arguments:
|
200 |
+
- isRoot: whether the current node is a root node.
|
201 |
+
- parent_q: the q value of the parent node.
|
202 |
+
- discount_factor: the discount_factor of reward.
|
203 |
+
*/
|
204 |
+
float total_unsigned_q = 0.0;
|
205 |
+
int total_visits = 0;
|
206 |
+
for (auto a : this->legal_actions)
|
207 |
+
{
|
208 |
+
CNode *child = this->get_child(a);
|
209 |
+
if (child->visit_count > 0)
|
210 |
+
{
|
211 |
+
float true_reward = child->reward;
|
212 |
+
float qsa = true_reward + discount_factor * child->value();
|
213 |
+
total_unsigned_q += qsa;
|
214 |
+
total_visits += 1;
|
215 |
+
}
|
216 |
+
}
|
217 |
+
|
218 |
+
float mean_q = 0.0;
|
219 |
+
if (isRoot && total_visits > 0)
|
220 |
+
{
|
221 |
+
mean_q = (total_unsigned_q) / (total_visits);
|
222 |
+
}
|
223 |
+
else
|
224 |
+
{
|
225 |
+
mean_q = (parent_q + total_unsigned_q) / (total_visits + 1);
|
226 |
+
}
|
227 |
+
return mean_q;
|
228 |
+
}
|
229 |
+
|
230 |
+
void CNode::print_out()
|
231 |
+
{
|
232 |
+
return;
|
233 |
+
}
|
234 |
+
|
235 |
+
int CNode::expanded()
|
236 |
+
{
|
237 |
+
/*
|
238 |
+
Overview:
|
239 |
+
Return whether the current node is expanded.
|
240 |
+
*/
|
241 |
+
return this->children.size() > 0;
|
242 |
+
}
|
243 |
+
|
244 |
+
float CNode::value()
|
245 |
+
{
|
246 |
+
/*
|
247 |
+
Overview:
|
248 |
+
Return the real value of the current tree.
|
249 |
+
*/
|
250 |
+
float true_value = 0.0;
|
251 |
+
if (this->visit_count == 0)
|
252 |
+
{
|
253 |
+
return true_value;
|
254 |
+
}
|
255 |
+
else
|
256 |
+
{
|
257 |
+
true_value = this->value_sum / this->visit_count;
|
258 |
+
return true_value;
|
259 |
+
}
|
260 |
+
}
|
261 |
+
|
262 |
+
std::vector<int> CNode::get_trajectory()
|
263 |
+
{
|
264 |
+
/*
|
265 |
+
Overview:
|
266 |
+
Find the current best trajectory starts from the current node.
|
267 |
+
Outputs:
|
268 |
+
- traj: a vector of node index, which is the current best trajectory from this node.
|
269 |
+
*/
|
270 |
+
std::vector<int> traj;
|
271 |
+
|
272 |
+
CNode *node = this;
|
273 |
+
int best_action = node->best_action;
|
274 |
+
while (best_action >= 0)
|
275 |
+
{
|
276 |
+
traj.push_back(best_action);
|
277 |
+
|
278 |
+
node = node->get_child(best_action);
|
279 |
+
best_action = node->best_action;
|
280 |
+
}
|
281 |
+
return traj;
|
282 |
+
}
|
283 |
+
|
284 |
+
std::vector<int> CNode::get_children_distribution()
|
285 |
+
{
|
286 |
+
/*
|
287 |
+
Overview:
|
288 |
+
Get the distribution of child nodes in the format of visit_count.
|
289 |
+
Outputs:
|
290 |
+
- distribution: a vector of distribution of child nodes in the format of visit count (i.e. [1,3,0,2,5]).
|
291 |
+
*/
|
292 |
+
std::vector<int> distribution;
|
293 |
+
if (this->expanded())
|
294 |
+
{
|
295 |
+
for (auto a : this->legal_actions)
|
296 |
+
{
|
297 |
+
CNode *child = this->get_child(a);
|
298 |
+
distribution.push_back(child->visit_count);
|
299 |
+
}
|
300 |
+
}
|
301 |
+
return distribution;
|
302 |
+
}
|
303 |
+
|
304 |
+
CNode *CNode::get_child(int action)
|
305 |
+
{
|
306 |
+
/*
|
307 |
+
Overview:
|
308 |
+
Get the child node corresponding to the input action.
|
309 |
+
Arguments:
|
310 |
+
- action: the action to get child.
|
311 |
+
*/
|
312 |
+
return &(this->children[action]);
|
313 |
+
}
|
314 |
+
|
315 |
+
//*********************************************************
|
316 |
+
|
317 |
+
CRoots::CRoots()
|
318 |
+
{
|
319 |
+
/*
|
320 |
+
Overview:
|
321 |
+
The initialization of CRoots.
|
322 |
+
*/
|
323 |
+
this->root_num = 0;
|
324 |
+
}
|
325 |
+
|
326 |
+
CRoots::CRoots(int root_num, std::vector<std::vector<int> > &legal_actions_list, int chance_space_size=2)
|
327 |
+
{
|
328 |
+
/*
|
329 |
+
Overview:
|
330 |
+
The initialization of CRoots with root num and legal action lists.
|
331 |
+
Arguments:
|
332 |
+
- root_num: the number of the current root.
|
333 |
+
- legal_action_list: the vector of the legal action of this root.
|
334 |
+
*/
|
335 |
+
this->root_num = root_num;
|
336 |
+
this->legal_actions_list = legal_actions_list;
|
337 |
+
|
338 |
+
for (int i = 0; i < root_num; ++i)
|
339 |
+
{
|
340 |
+
this->roots.push_back(CNode(0, this->legal_actions_list[i], false, chance_space_size));
|
341 |
+
// this->roots.push_back(CNode(0, this->legal_actions_list[i], false));
|
342 |
+
|
343 |
+
}
|
344 |
+
}
|
345 |
+
|
346 |
+
CRoots::~CRoots() {}
|
347 |
+
|
348 |
+
void CRoots::prepare(float root_noise_weight, const std::vector<std::vector<float> > &noises, const std::vector<float> &rewards, const std::vector<std::vector<float> > &policies, std::vector<int> &to_play_batch)
|
349 |
+
{
|
350 |
+
/*
|
351 |
+
Overview:
|
352 |
+
Expand the roots and add noises.
|
353 |
+
Arguments:
|
354 |
+
- root_noise_weight: the exploration fraction of roots
|
355 |
+
- noises: the vector of noise add to the roots.
|
356 |
+
- rewards: the vector of rewards of each root.
|
357 |
+
- policies: the vector of policy logits of each root.
|
358 |
+
- to_play_batch: the vector of the player side of each root.
|
359 |
+
*/
|
360 |
+
for (int i = 0; i < this->root_num; ++i)
|
361 |
+
{
|
362 |
+
this->roots[i].expand(to_play_batch[i], 0, i, rewards[i], policies[i], true);
|
363 |
+
this->roots[i].add_exploration_noise(root_noise_weight, noises[i]);
|
364 |
+
|
365 |
+
this->roots[i].visit_count += 1;
|
366 |
+
}
|
367 |
+
}
|
368 |
+
|
369 |
+
void CRoots::prepare_no_noise(const std::vector<float> &rewards, const std::vector<std::vector<float> > &policies, std::vector<int> &to_play_batch)
|
370 |
+
{
|
371 |
+
/*
|
372 |
+
Overview:
|
373 |
+
Expand the roots without noise.
|
374 |
+
Arguments:
|
375 |
+
- rewards: the vector of rewards of each root.
|
376 |
+
- policies: the vector of policy logits of each root.
|
377 |
+
- to_play_batch: the vector of the player side of each root.
|
378 |
+
*/
|
379 |
+
for (int i = 0; i < this->root_num; ++i)
|
380 |
+
{
|
381 |
+
this->roots[i].expand(to_play_batch[i], 0, i, rewards[i], policies[i], true);
|
382 |
+
|
383 |
+
this->roots[i].visit_count += 1;
|
384 |
+
}
|
385 |
+
}
|
386 |
+
|
387 |
+
void CRoots::clear()
|
388 |
+
{
|
389 |
+
/*
|
390 |
+
Overview:
|
391 |
+
Clear the roots vector.
|
392 |
+
*/
|
393 |
+
this->roots.clear();
|
394 |
+
}
|
395 |
+
|
396 |
+
std::vector<std::vector<int> > CRoots::get_trajectories()
|
397 |
+
{
|
398 |
+
/*
|
399 |
+
Overview:
|
400 |
+
Find the current best trajectory starts from each root.
|
401 |
+
Outputs:
|
402 |
+
- traj: a vector of node index, which is the current best trajectory from each root.
|
403 |
+
*/
|
404 |
+
std::vector<std::vector<int> > trajs;
|
405 |
+
trajs.reserve(this->root_num);
|
406 |
+
|
407 |
+
for (int i = 0; i < this->root_num; ++i)
|
408 |
+
{
|
409 |
+
trajs.push_back(this->roots[i].get_trajectory());
|
410 |
+
}
|
411 |
+
return trajs;
|
412 |
+
}
|
413 |
+
|
414 |
+
std::vector<std::vector<int> > CRoots::get_distributions()
|
415 |
+
{
|
416 |
+
/*
|
417 |
+
Overview:
|
418 |
+
Get the children distribution of each root.
|
419 |
+
Outputs:
|
420 |
+
- distribution: a vector of distribution of child nodes in the format of visit count (i.e. [1,3,0,2,5]).
|
421 |
+
*/
|
422 |
+
std::vector<std::vector<int> > distributions;
|
423 |
+
distributions.reserve(this->root_num);
|
424 |
+
|
425 |
+
for (int i = 0; i < this->root_num; ++i)
|
426 |
+
{
|
427 |
+
distributions.push_back(this->roots[i].get_children_distribution());
|
428 |
+
}
|
429 |
+
return distributions;
|
430 |
+
}
|
431 |
+
|
432 |
+
std::vector<float> CRoots::get_values()
|
433 |
+
{
|
434 |
+
/*
|
435 |
+
Overview:
|
436 |
+
Return the real value of each root.
|
437 |
+
*/
|
438 |
+
std::vector<float> values;
|
439 |
+
for (int i = 0; i < this->root_num; ++i)
|
440 |
+
{
|
441 |
+
values.push_back(this->roots[i].value());
|
442 |
+
}
|
443 |
+
return values;
|
444 |
+
}
|
445 |
+
|
446 |
+
//*********************************************************
|
447 |
+
//
|
448 |
+
void update_tree_q(CNode *root, tools::CMinMaxStats &min_max_stats, float discount_factor, int players)
|
449 |
+
{
|
450 |
+
/*
|
451 |
+
Overview:
|
452 |
+
Update the q value of the root and its child nodes.
|
453 |
+
Arguments:
|
454 |
+
- root: the root that update q value from.
|
455 |
+
- min_max_stats: a tool used to min-max normalize the q value.
|
456 |
+
- discount_factor: the discount factor of reward.
|
457 |
+
- players: the number of players.
|
458 |
+
*/
|
459 |
+
std::stack<CNode *> node_stack;
|
460 |
+
node_stack.push(root);
|
461 |
+
while (node_stack.size() > 0)
|
462 |
+
{
|
463 |
+
CNode *node = node_stack.top();
|
464 |
+
node_stack.pop();
|
465 |
+
|
466 |
+
if (node != root)
|
467 |
+
{
|
468 |
+
// # NOTE: in self-play-mode, value_prefix is not calculated according to the perspective of current player of node,
|
469 |
+
// # but treated as 1 player, just for obtaining the true reward in the perspective of current player of node.
|
470 |
+
// # true_reward = node.value_prefix - (- parent_value_prefix)
|
471 |
+
// float true_reward = node->value_prefix - node->parent_value_prefix;
|
472 |
+
float true_reward = node->reward;
|
473 |
+
|
474 |
+
float qsa;
|
475 |
+
if (players == 1)
|
476 |
+
qsa = true_reward + discount_factor * node->value();
|
477 |
+
else if (players == 2)
|
478 |
+
// TODO(pu):
|
479 |
+
qsa = true_reward + discount_factor * (-1) * node->value();
|
480 |
+
|
481 |
+
min_max_stats.update(qsa);
|
482 |
+
}
|
483 |
+
|
484 |
+
for (auto a : node->legal_actions)
|
485 |
+
{
|
486 |
+
CNode *child = node->get_child(a);
|
487 |
+
if (child->expanded())
|
488 |
+
{
|
489 |
+
node_stack.push(child);
|
490 |
+
}
|
491 |
+
}
|
492 |
+
}
|
493 |
+
}
|
494 |
+
|
495 |
+
void cbackpropagate(std::vector<CNode *> &search_path, tools::CMinMaxStats &min_max_stats, int to_play, float value, float discount_factor)
|
496 |
+
{
|
497 |
+
/*
|
498 |
+
Overview:
|
499 |
+
Update the value sum and visit count of nodes along the search path.
|
500 |
+
Arguments:
|
501 |
+
- search_path: a vector of nodes on the search path.
|
502 |
+
- min_max_stats: a tool used to min-max normalize the q value.
|
503 |
+
- to_play: which player to play the game in the current node.
|
504 |
+
- value: the value to propagate along the search path.
|
505 |
+
- discount_factor: the discount factor of reward.
|
506 |
+
*/
|
507 |
+
assert(to_play == -1 || to_play == 1 || to_play == 2);
|
508 |
+
if (to_play == -1)
|
509 |
+
{
|
510 |
+
// for play-with-bot-mode
|
511 |
+
float bootstrap_value = value;
|
512 |
+
int path_len = search_path.size();
|
513 |
+
for (int i = path_len - 1; i >= 0; --i)
|
514 |
+
{
|
515 |
+
CNode *node = search_path[i];
|
516 |
+
node->value_sum += bootstrap_value;
|
517 |
+
node->visit_count += 1;
|
518 |
+
|
519 |
+
float true_reward = node->reward;
|
520 |
+
|
521 |
+
min_max_stats.update(true_reward + discount_factor * node->value());
|
522 |
+
|
523 |
+
bootstrap_value = true_reward + discount_factor * bootstrap_value;
|
524 |
+
// std::cout << "to_play: " << to_play << std::endl;
|
525 |
+
|
526 |
+
}
|
527 |
+
}
|
528 |
+
else
|
529 |
+
{
|
530 |
+
// for self-play-mode
|
531 |
+
float bootstrap_value = value;
|
532 |
+
int path_len = search_path.size();
|
533 |
+
for (int i = path_len - 1; i >= 0; --i)
|
534 |
+
{
|
535 |
+
CNode *node = search_path[i];
|
536 |
+
if (node->to_play == to_play)
|
537 |
+
node->value_sum += bootstrap_value;
|
538 |
+
else
|
539 |
+
node->value_sum += -bootstrap_value;
|
540 |
+
node->visit_count += 1;
|
541 |
+
|
542 |
+
// NOTE: in self-play-mode, value_prefix is not calculated according to the perspective of current player of node,
|
543 |
+
// but treated as 1 player, just for obtaining the true reward in the perspective of current player of node.
|
544 |
+
// float true_reward = node->value_prefix - parent_value_prefix;
|
545 |
+
float true_reward = node->reward;
|
546 |
+
|
547 |
+
// TODO(pu): why in muzero-general is - node.value
|
548 |
+
min_max_stats.update(true_reward + discount_factor * -node->value());
|
549 |
+
|
550 |
+
if (node->to_play == to_play)
|
551 |
+
bootstrap_value = -true_reward + discount_factor * bootstrap_value;
|
552 |
+
else
|
553 |
+
bootstrap_value = true_reward + discount_factor * bootstrap_value;
|
554 |
+
}
|
555 |
+
}
|
556 |
+
}
|
557 |
+
|
558 |
+
void cbatch_backpropagate(int current_latent_state_index, float discount_factor, const std::vector<float> &value_prefixs, const std::vector<float> &values, const std::vector<std::vector<float> > &policies, tools::CMinMaxStatsList *min_max_stats_lst, CSearchResults &results, std::vector<int> &to_play_batch, std::vector<bool> &is_chance_list, std::vector<int> &leaf_idx_list)
|
559 |
+
{
|
560 |
+
/*
|
561 |
+
Overview:
|
562 |
+
Expand the nodes along the search path and update the infos.
|
563 |
+
Arguments:
|
564 |
+
- current_latent_state_index: The index of latent state of the leaf node in the search path.
|
565 |
+
- discount_factor: the discount factor of reward.
|
566 |
+
- value_prefixs: the value prefixs of nodes along the search path.
|
567 |
+
- values: the values to propagate along the search path.
|
568 |
+
- policies: the policy logits of nodes along the search path.
|
569 |
+
- min_max_stats: a tool used to min-max normalize the q value.
|
570 |
+
- results: the search results.
|
571 |
+
- to_play_batch: the batch of which player is playing on this node.
|
572 |
+
*/
|
573 |
+
|
574 |
+
if (leaf_idx_list.empty()) {
|
575 |
+
leaf_idx_list.resize(results.num);
|
576 |
+
for (int i = 0; i < results.num; ++i) {
|
577 |
+
leaf_idx_list[i] = i;
|
578 |
+
}
|
579 |
+
}
|
580 |
+
|
581 |
+
for (auto leaf_order = 0; leaf_order < leaf_idx_list.size(); ++leaf_order) {
|
582 |
+
int i = leaf_idx_list[leaf_order];
|
583 |
+
}
|
584 |
+
for (int leaf_order = 0; leaf_order < leaf_idx_list.size(); ++leaf_order)
|
585 |
+
{
|
586 |
+
int i = leaf_idx_list[leaf_order];
|
587 |
+
results.nodes[i]->expand(to_play_batch[i], current_latent_state_index, i, value_prefixs[leaf_order], policies[leaf_order], is_chance_list[i]);
|
588 |
+
cbackpropagate(results.search_paths[i], min_max_stats_lst->stats_lst[i], to_play_batch[i], values[leaf_order], discount_factor);
|
589 |
+
}
|
590 |
+
|
591 |
+
}
|
592 |
+
|
593 |
+
int cselect_child(CNode *root, tools::CMinMaxStats &min_max_stats, int pb_c_base, float pb_c_init, float discount_factor, float mean_q, int players)
|
594 |
+
{
|
595 |
+
/*
|
596 |
+
Overview:
|
597 |
+
Select the child node of the roots according to ucb scores.
|
598 |
+
Arguments:
|
599 |
+
- root: the roots to select the child node.
|
600 |
+
- min_max_stats: a tool used to min-max normalize the score.
|
601 |
+
- pb_c_base: constants c2 in muzero.
|
602 |
+
- pb_c_init: constants c1 in muzero.
|
603 |
+
- disount_factor: the discount factor of reward.
|
604 |
+
- mean_q: the mean q value of the parent node.
|
605 |
+
- players: the number of players.
|
606 |
+
Outputs:
|
607 |
+
- action: the action to select.
|
608 |
+
*/
|
609 |
+
if (root->is_chance) {
|
610 |
+
// std::cout << "root->is_chance: True " << std::endl;
|
611 |
+
|
612 |
+
// If the node is a chance node, we sample from the prior outcome distribution.
|
613 |
+
std::vector<int> outcomes;
|
614 |
+
std::vector<double> probs;
|
615 |
+
|
616 |
+
for (const auto& kv : root->children) {
|
617 |
+
outcomes.push_back(kv.first);
|
618 |
+
probs.push_back(kv.second.prior); // Assuming 'prior' is a member variable of Node
|
619 |
+
}
|
620 |
+
|
621 |
+
std::random_device rd;
|
622 |
+
std::mt19937 gen(rd());
|
623 |
+
std::discrete_distribution<> dist(probs.begin(), probs.end());
|
624 |
+
|
625 |
+
int outcome = outcomes[dist(gen)];
|
626 |
+
// std::cout << "Outcome: " << outcome << std::endl;
|
627 |
+
|
628 |
+
return outcome;
|
629 |
+
}
|
630 |
+
|
631 |
+
// std::cout << "root->is_chance: False " << std::endl;
|
632 |
+
|
633 |
+
float max_score = FLOAT_MIN;
|
634 |
+
const float epsilon = 0.000001;
|
635 |
+
std::vector<int> max_index_lst;
|
636 |
+
for (auto a : root->legal_actions)
|
637 |
+
{
|
638 |
+
|
639 |
+
CNode *child = root->get_child(a);
|
640 |
+
float temp_score = cucb_score(child, min_max_stats, mean_q, root->visit_count - 1, pb_c_base, pb_c_init, discount_factor, players);
|
641 |
+
|
642 |
+
if (max_score < temp_score)
|
643 |
+
{
|
644 |
+
max_score = temp_score;
|
645 |
+
|
646 |
+
max_index_lst.clear();
|
647 |
+
max_index_lst.push_back(a);
|
648 |
+
}
|
649 |
+
else if (temp_score >= max_score - epsilon)
|
650 |
+
{
|
651 |
+
max_index_lst.push_back(a);
|
652 |
+
}
|
653 |
+
}
|
654 |
+
|
655 |
+
int action = 0;
|
656 |
+
if (max_index_lst.size() > 0)
|
657 |
+
{
|
658 |
+
int rand_index = rand() % max_index_lst.size();
|
659 |
+
action = max_index_lst[rand_index];
|
660 |
+
}
|
661 |
+
return action;
|
662 |
+
}
|
663 |
+
|
664 |
+
float cucb_score(CNode *child, tools::CMinMaxStats &min_max_stats, float parent_mean_q, float total_children_visit_counts, float pb_c_base, float pb_c_init, float discount_factor, int players)
|
665 |
+
{
|
666 |
+
/*
|
667 |
+
Overview:
|
668 |
+
Compute the ucb score of the child.
|
669 |
+
Arguments:
|
670 |
+
- child: the child node to compute ucb score.
|
671 |
+
- min_max_stats: a tool used to min-max normalize the score.
|
672 |
+
- mean_q: the mean q value of the parent node.
|
673 |
+
- total_children_visit_counts: the total visit counts of the child nodes of the parent node.
|
674 |
+
- pb_c_base: constants c2 in muzero.
|
675 |
+
- pb_c_init: constants c1 in muzero.
|
676 |
+
- disount_factor: the discount factor of reward.
|
677 |
+
- players: the number of players.
|
678 |
+
Outputs:
|
679 |
+
- ucb_value: the ucb score of the child.
|
680 |
+
*/
|
681 |
+
float pb_c = 0.0, prior_score = 0.0, value_score = 0.0;
|
682 |
+
pb_c = log((total_children_visit_counts + pb_c_base + 1) / pb_c_base) + pb_c_init;
|
683 |
+
pb_c *= (sqrt(total_children_visit_counts) / (child->visit_count + 1));
|
684 |
+
|
685 |
+
prior_score = pb_c * child->prior;
|
686 |
+
if (child->visit_count == 0)
|
687 |
+
{
|
688 |
+
value_score = parent_mean_q;
|
689 |
+
}
|
690 |
+
else
|
691 |
+
{
|
692 |
+
float true_reward = child->reward;
|
693 |
+
if (players == 1)
|
694 |
+
value_score = true_reward + discount_factor * child->value();
|
695 |
+
else if (players == 2)
|
696 |
+
value_score = true_reward + discount_factor * (-child->value());
|
697 |
+
}
|
698 |
+
|
699 |
+
value_score = min_max_stats.normalize(value_score);
|
700 |
+
|
701 |
+
if (value_score < 0)
|
702 |
+
value_score = 0;
|
703 |
+
if (value_score > 1)
|
704 |
+
value_score = 1;
|
705 |
+
|
706 |
+
float ucb_value = prior_score + value_score;
|
707 |
+
return ucb_value;
|
708 |
+
}
|
709 |
+
|
710 |
+
void cbatch_traverse(CRoots *roots, int pb_c_base, float pb_c_init, float discount_factor, tools::CMinMaxStatsList *min_max_stats_lst, CSearchResults &results, std::vector<int> &virtual_to_play_batch)
|
711 |
+
{
|
712 |
+
/*
|
713 |
+
Overview:
|
714 |
+
Search node path from the roots.
|
715 |
+
Arguments:
|
716 |
+
- roots: the roots that search from.
|
717 |
+
- pb_c_base: constants c2 in muzero.
|
718 |
+
- pb_c_init: constants c1 in muzero.
|
719 |
+
- disount_factor: the discount factor of reward.
|
720 |
+
- min_max_stats: a tool used to min-max normalize the score.
|
721 |
+
- results: the search results.
|
722 |
+
- virtual_to_play_batch: the batch of which player is playing on this node.
|
723 |
+
*/
|
724 |
+
// set seed
|
725 |
+
get_time_and_set_rand_seed();
|
726 |
+
|
727 |
+
int last_action = -1;
|
728 |
+
float parent_q = 0.0;
|
729 |
+
results.search_lens = std::vector<int>();
|
730 |
+
|
731 |
+
int players = 0;
|
732 |
+
int largest_element = *max_element(virtual_to_play_batch.begin(), virtual_to_play_batch.end()); // 0 or 2
|
733 |
+
if (largest_element == -1)
|
734 |
+
players = 1;
|
735 |
+
else
|
736 |
+
players = 2;
|
737 |
+
|
738 |
+
for (int i = 0; i < results.num; ++i)
|
739 |
+
{
|
740 |
+
CNode *node = &(roots->roots[i]);
|
741 |
+
int is_root = 1;
|
742 |
+
int search_len = 0;
|
743 |
+
results.search_paths[i].push_back(node);
|
744 |
+
|
745 |
+
// std::cout << "root->is_chance: " <<node->is_chance<< std::endl;
|
746 |
+
// node->is_chance=false;
|
747 |
+
|
748 |
+
while (node->expanded())
|
749 |
+
{
|
750 |
+
float mean_q = node->compute_mean_q(is_root, parent_q, discount_factor);
|
751 |
+
is_root = 0;
|
752 |
+
parent_q = mean_q;
|
753 |
+
// std::cout << "node->is_chance: " <<node->is_chance<< std::endl;
|
754 |
+
|
755 |
+
int action = cselect_child(node, min_max_stats_lst->stats_lst[i], pb_c_base, pb_c_init, discount_factor, mean_q, players);
|
756 |
+
if (players > 1)
|
757 |
+
{
|
758 |
+
assert(virtual_to_play_batch[i] == 1 || virtual_to_play_batch[i] == 2);
|
759 |
+
if (virtual_to_play_batch[i] == 1)
|
760 |
+
virtual_to_play_batch[i] = 2;
|
761 |
+
else
|
762 |
+
virtual_to_play_batch[i] = 1;
|
763 |
+
}
|
764 |
+
|
765 |
+
node->best_action = action;
|
766 |
+
// next
|
767 |
+
node = node->get_child(action);
|
768 |
+
last_action = action;
|
769 |
+
results.search_paths[i].push_back(node);
|
770 |
+
search_len += 1;
|
771 |
+
}
|
772 |
+
|
773 |
+
CNode *parent = results.search_paths[i][results.search_paths[i].size() - 2];
|
774 |
+
|
775 |
+
results.latent_state_index_in_search_path.push_back(parent->current_latent_state_index);
|
776 |
+
results.latent_state_index_in_batch.push_back(parent->batch_index);
|
777 |
+
|
778 |
+
results.last_actions.push_back(last_action);
|
779 |
+
results.search_lens.push_back(search_len);
|
780 |
+
results.nodes.push_back(node);
|
781 |
+
results.leaf_node_is_chance.push_back(node->is_chance);
|
782 |
+
results.virtual_to_play_batchs.push_back(virtual_to_play_batch[i]);
|
783 |
+
|
784 |
+
}
|
785 |
+
}
|
786 |
+
|
787 |
+
}
|
LightZero/lzero/mcts/ctree/ctree_stochastic_muzero/lib/cnode.h
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// C++11
|
2 |
+
|
3 |
+
#ifndef CNODE_H
|
4 |
+
#define CNODE_H
|
5 |
+
|
6 |
+
#include "./../common_lib/cminimax.h"
|
7 |
+
#include <math.h>
|
8 |
+
#include <vector>
|
9 |
+
#include <stack>
|
10 |
+
#include <stdlib.h>
|
11 |
+
#include <time.h>
|
12 |
+
#include <cmath>
|
13 |
+
#include <sys/timeb.h>
|
14 |
+
#include <time.h>
|
15 |
+
#include <map>
|
16 |
+
|
17 |
+
const int DEBUG_MODE = 0;
|
18 |
+
|
19 |
+
namespace tree {
|
20 |
+
|
21 |
+
class CNode {
|
22 |
+
public:
|
23 |
+
int visit_count, to_play, current_latent_state_index, batch_index, best_action;
|
24 |
+
float reward, prior, value_sum;
|
25 |
+
bool is_chance;
|
26 |
+
int chance_space_size;
|
27 |
+
std::vector<int> children_index;
|
28 |
+
std::map<int, CNode> children;
|
29 |
+
|
30 |
+
std::vector<int> legal_actions;
|
31 |
+
|
32 |
+
CNode();
|
33 |
+
CNode(float prior, std::vector<int> &legal_actions, bool is_chance = false, int chance_space_size = 2);
|
34 |
+
~CNode();
|
35 |
+
|
36 |
+
void expand(int to_play, int current_latent_state_index, int batch_index, float reward, const std::vector<float> &policy_logits, bool is_chance);
|
37 |
+
void add_exploration_noise(float exploration_fraction, const std::vector<float> &noises);
|
38 |
+
float compute_mean_q(int isRoot, float parent_q, float discount_factor);
|
39 |
+
void print_out();
|
40 |
+
|
41 |
+
int expanded();
|
42 |
+
|
43 |
+
float value();
|
44 |
+
|
45 |
+
std::vector<int> get_trajectory();
|
46 |
+
std::vector<int> get_children_distribution();
|
47 |
+
CNode* get_child(int action);
|
48 |
+
};
|
49 |
+
|
50 |
+
class CRoots{
|
51 |
+
public:
|
52 |
+
int root_num;
|
53 |
+
std::vector<CNode> roots;
|
54 |
+
std::vector<std::vector<int> > legal_actions_list;
|
55 |
+
int chance_space_size;
|
56 |
+
|
57 |
+
CRoots();
|
58 |
+
CRoots(int root_num, std::vector<std::vector<int> > &legal_actions_list, int chance_space_size);
|
59 |
+
~CRoots();
|
60 |
+
|
61 |
+
void prepare(float root_noise_weight, const std::vector<std::vector<float> > &noises, const std::vector<float> &rewards, const std::vector<std::vector<float> > &policies, std::vector<int> &to_play_batch);
|
62 |
+
void prepare_no_noise(const std::vector<float> &rewards, const std::vector<std::vector<float> > &policies, std::vector<int> &to_play_batch);
|
63 |
+
void clear();
|
64 |
+
std::vector<std::vector<int> > get_trajectories();
|
65 |
+
std::vector<std::vector<int> > get_distributions();
|
66 |
+
std::vector<float> get_values();
|
67 |
+
|
68 |
+
};
|
69 |
+
|
70 |
+
class CSearchResults{
|
71 |
+
public:
|
72 |
+
int num;
|
73 |
+
std::vector<int> latent_state_index_in_search_path, latent_state_index_in_batch, last_actions, search_lens;
|
74 |
+
std::vector<int> virtual_to_play_batchs;
|
75 |
+
std::vector<CNode*> nodes;
|
76 |
+
std::vector<bool> leaf_node_is_chance;
|
77 |
+
std::vector<std::vector<CNode*> > search_paths;
|
78 |
+
|
79 |
+
CSearchResults();
|
80 |
+
CSearchResults(int num);
|
81 |
+
~CSearchResults();
|
82 |
+
|
83 |
+
};
|
84 |
+
|
85 |
+
|
86 |
+
//*********************************************************
|
87 |
+
void update_tree_q(CNode* root, tools::CMinMaxStats &min_max_stats, float discount_factor, int players);
|
88 |
+
void cbackpropagate(std::vector<CNode*> &search_path, tools::CMinMaxStats &min_max_stats, int to_play, float value, float discount_factor);
|
89 |
+
void cbatch_backpropagate(int current_latent_state_index, float discount_factor, const std::vector<float> &rewards, const std::vector<float> &values, const std::vector<std::vector<float> > &policies, tools::CMinMaxStatsList *min_max_stats_lst, CSearchResults &results, std::vector<int> &to_play_batch, std::vector<int> & is_chance_list, std::vector<int> &leaf_idx_list);
|
90 |
+
int cselect_child(CNode* root, tools::CMinMaxStats &min_max_stats, int pb_c_base, float pb_c_init, float discount_factor, float mean_q, int players);
|
91 |
+
float cucb_score(CNode *child, tools::CMinMaxStats &min_max_stats, float parent_mean_q, float total_children_visit_counts, float pb_c_base, float pb_c_init, float discount_factor, int players);
|
92 |
+
void cbatch_traverse(CRoots *roots, int pb_c_base, float pb_c_init, float discount_factor, tools::CMinMaxStatsList *min_max_stats_lst, CSearchResults &results, std::vector<int> &virtual_to_play_batch);
|
93 |
+
}
|
94 |
+
|
95 |
+
#endif
|