import configargparse as cfargparse import os import torch import onmt.opts as opts from onmt.utils.logging import logger from onmt.constants import CorpusName, ModelTask from onmt.transforms import AVAILABLE_TRANSFORMS class DataOptsCheckerMixin(object): """Checker with methods for validate data related options.""" @staticmethod def _validate_file(file_path, info): """Check `file_path` is valid or raise `IOError`.""" if not os.path.isfile(file_path): raise IOError(f"Please check path of your {info} file!") @classmethod def _validate_data(cls, opt): """Parse corpora specified in data field of YAML file.""" import yaml default_transforms = opt.transforms if len(default_transforms) != 0: logger.info(f"Default transforms: {default_transforms}.") corpora = yaml.safe_load(opt.data) for cname, corpus in corpora.items(): # Check Transforms _transforms = corpus.get("transforms", None) if _transforms is None: logger.info( f"Missing transforms field for {cname} data, " f"set to default: {default_transforms}." ) corpus["transforms"] = default_transforms # Check path path_src = corpus.get("path_src", None) path_tgt = corpus.get("path_tgt", None) if path_src is None: raise ValueError( f"Corpus {cname} src path is required." "tgt path is also required for non language" " modeling tasks." ) else: opt.data_task = ModelTask.SEQ2SEQ if path_tgt is None: logger.debug( "path_tgt is None, it should be set unless the task" " is language modeling" ) opt.data_task = ModelTask.LANGUAGE_MODEL # tgt is src for LM task corpus["path_tgt"] = path_src corpora[cname] = corpus path_tgt = path_src cls._validate_file(path_src, info=f"{cname}/path_src") cls._validate_file(path_tgt, info=f"{cname}/path_tgt") path_align = corpus.get("path_align", None) if path_align is None: if hasattr(opt, "lambda_align") and opt.lambda_align > 0.0: raise ValueError( f"Corpus {cname} alignment file path are " "required when lambda_align > 0.0" ) corpus["path_align"] = None else: cls._validate_file(path_align, info=f"{cname}/path_align") # Check weight weight = corpus.get("weight", None) if weight is None: if cname != CorpusName.VALID: logger.warning( f"Corpus {cname}'s weight should be given." " We default it to 1 for you." ) corpus["weight"] = 1 # Check features if opt.n_src_feats > 0: if "inferfeats" not in corpus["transforms"]: raise ValueError( "'inferfeats' transform is required " "when setting source features" ) logger.info(f"Parsed {len(corpora)} corpora from -data.") opt.data = corpora @classmethod def _validate_transforms_opts(cls, opt): """Check options used by transforms.""" for name, transform_cls in AVAILABLE_TRANSFORMS.items(): if name in opt._all_transform: transform_cls._validate_options(opt) @classmethod def _get_all_transform(cls, opt): """Should only called after `_validate_data`.""" all_transforms = set(opt.transforms) for cname, corpus in opt.data.items(): _transforms = set(corpus["transforms"]) if len(_transforms) != 0: all_transforms.update(_transforms) if hasattr(opt, "lambda_align") and opt.lambda_align > 0.0: if not all_transforms.isdisjoint({"sentencepiece", "bpe", "onmt_tokenize"}): raise ValueError( "lambda_align is not compatible with" " on-the-fly tokenization." ) if not all_transforms.isdisjoint({"tokendrop", "prefix", "bart"}): raise ValueError( "lambda_align is not compatible yet with" " potentiel token deletion/addition." ) opt._all_transform = all_transforms @classmethod def _get_all_transform_translate(cls, opt): opt._all_transform = opt.transforms @classmethod def _validate_vocab_opts(cls, opt, build_vocab_only=False): """Check options relate to vocab.""" if build_vocab_only: if not opt.share_vocab: assert opt.tgt_vocab, "-tgt_vocab is required if not -share_vocab." return # validation when train: cls._validate_file(opt.src_vocab, info="src vocab") if not opt.share_vocab: cls._validate_file(opt.tgt_vocab, info="tgt vocab") if opt.dump_transforms: assert ( opt.save_data ), "-save_data should be set if set \ -dump_transforms." # Check embeddings stuff if opt.both_embeddings is not None: assert ( opt.src_embeddings is None and opt.tgt_embeddings is None ), "You don't need -src_embeddings or -tgt_embeddings \ if -both_embeddings is set." if any( [ opt.both_embeddings is not None, opt.src_embeddings is not None, opt.tgt_embeddings is not None, ] ): assert ( opt.embeddings_type is not None ), "You need to specify an -embedding_type!" assert ( opt.save_data ), "-save_data should be set if use \ pretrained embeddings." @classmethod def _validate_language_model_compatibilities_opts(cls, opt): if opt.model_task != ModelTask.LANGUAGE_MODEL: return logger.info("encoder is not used for LM task") assert opt.share_vocab and ( opt.tgt_vocab is None ), "vocab must be shared for LM task" assert ( opt.decoder_type == "transformer" ), "Only transformer decoder is supported for LM task" @classmethod def _validate_source_features_opts(cls, opt): if opt.src_feats_defaults is not None: assert opt.n_src_feats == len( opt.src_feats_defaults.split("│") ), "The number source features defaults does not match \ -n_src_feats" @classmethod def validate_prepare_opts(cls, opt, build_vocab_only=False): """Validate all options relate to prepare (data/transform/vocab).""" if opt.n_sample != 0: assert ( opt.save_data ), "-save_data should be set if \ want save samples." cls._validate_data(opt) cls._get_all_transform(opt) cls._validate_transforms_opts(opt) cls._validate_vocab_opts(opt, build_vocab_only=build_vocab_only) cls._validate_source_features_opts(opt) @classmethod def validate_model_opts(cls, opt): cls._validate_language_model_compatibilities_opts(opt) class ArgumentParser(cfargparse.ArgumentParser, DataOptsCheckerMixin): """OpenNMT option parser powered with option check methods.""" def __init__( self, config_file_parser_class=cfargparse.YAMLConfigFileParser, formatter_class=cfargparse.ArgumentDefaultsHelpFormatter, **kwargs, ): super(ArgumentParser, self).__init__( config_file_parser_class=config_file_parser_class, formatter_class=formatter_class, **kwargs, ) @classmethod def defaults(cls, *args): """Get default arguments added to a parser by all ``*args``.""" dummy_parser = cls() for callback in args: callback(dummy_parser) defaults = dummy_parser.parse_known_args([])[0] return defaults @classmethod def update_model_opts(cls, model_opt): if model_opt.word_vec_size > 0: model_opt.src_word_vec_size = model_opt.word_vec_size model_opt.tgt_word_vec_size = model_opt.word_vec_size # Backward compatibility with "fix_word_vecs_*" opts if hasattr(model_opt, "fix_word_vecs_enc"): model_opt.freeze_word_vecs_enc = model_opt.fix_word_vecs_enc if hasattr(model_opt, "fix_word_vecs_dec"): model_opt.freeze_word_vecs_dec = model_opt.fix_word_vecs_dec if model_opt.layers > 0: model_opt.enc_layers = model_opt.layers model_opt.dec_layers = model_opt.layers if model_opt.hidden_size > 0: model_opt.enc_hid_size = model_opt.hidden_size model_opt.dec_hid_size = model_opt.hidden_size model_opt.brnn = model_opt.encoder_type == "brnn" if model_opt.copy_attn_type is None: model_opt.copy_attn_type = model_opt.global_attention if model_opt.alignment_layer is None: model_opt.alignment_layer = -2 model_opt.lambda_align = 0.0 model_opt.full_context_alignment = False @classmethod def validate_model_opts(cls, model_opt): assert model_opt.model_type in ["text"], ( "Unsupported model type %s" % model_opt.model_type ) # encoder and decoder should be same sizes same_size = model_opt.enc_hid_size == model_opt.dec_hid_size assert same_size, "The encoder and decoder rnns must be the same size for now" assert ( model_opt.rnn_type != "SRU" or model_opt.gpu_ranks ), "Using SRU requires -gpu_ranks set." if model_opt.share_embeddings: if model_opt.model_type != "text": raise AssertionError("--share_embeddings requires --model_type text.") if model_opt.lambda_align > 0.0: assert ( model_opt.decoder_type == "transformer" ), "Only transformer is supported to joint learn alignment." assert ( model_opt.alignment_layer < model_opt.dec_layers and model_opt.alignment_layer >= -model_opt.dec_layers ), "N° alignment_layer should be smaller than number of layers." logger.info( "Joint learn alignment at layer [{}] " "with {} heads in full_context '{}'.".format( model_opt.alignment_layer, model_opt.alignment_heads, model_opt.full_context_alignment, ) ) if model_opt.feat_merge == "concat" and model_opt.feat_vec_size > 0: assert ( model_opt.feat_vec_size * model_opt.n_src_feats ) + model_opt.src_word_vec_size == model_opt.hidden_size, ( "(feat_vec_size * n_src_feats) + " "src_word_vec_size should be equal to hidden_size with " "-feat_merge concat mode." ) if model_opt.position_encoding and model_opt.max_relative_positions != 0: raise ValueError( "Cannot use absolute and relative position encoding at the" "same time. Use either --position_encoding=true for legacy" "absolute position encoding or --max_realtive_positions with" " -1 for Rotary, or > 0 for Relative Position Representations" "as in https://arxiv.org/pdf/1803.02155.pdf" ) if model_opt.multiquery and model_opt.num_kv == 0: model_opt.num_kv = 1 @classmethod def ckpt_model_opts(cls, ckpt_opt): # Load default opt values, then overwrite with the opts in # the checkpoint. That way, if there are new options added, # the defaults are used. opt = cls.defaults(opts.model_opts) opt.__dict__.update(ckpt_opt.__dict__) return opt @classmethod def validate_train_opts(cls, opt): if torch.cuda.is_available() and not opt.gpu_ranks: logger.warn("You have a CUDA device, should run with -gpu_ranks") if opt.world_size < len(opt.gpu_ranks): raise AssertionError( "parameter counts of -gpu_ranks must be less or equal " "than -world_size." ) if opt.world_size == len(opt.gpu_ranks) and min(opt.gpu_ranks) > 0: raise AssertionError( "-gpu_ranks should have master(=0) rank " "unless -world_size is greater than len(gpu_ranks)." ) assert len(opt.dropout) == len( opt.dropout_steps ), "Number of dropout values must match accum_steps values" assert len(opt.attention_dropout) == len( opt.dropout_steps ), "Number of attention_dropout values must match accum_steps values" assert len(opt.accum_count) == len( opt.accum_steps ), "Number of accum_count values must match number of accum_steps" if opt.update_vocab: assert opt.train_from, "-update_vocab needs -train_from option" assert opt.reset_optim in [ "states", "all", ], '-update_vocab needs -reset_optim "states" or "all"' @classmethod def validate_translate_opts(cls, opt): if opt.gold_align: assert opt.report_align, "-report_align should be enabled with -gold_align" assert ( not opt.replace_unk ), "-replace_unk option can not be used with -gold_align enabled" assert opt.tgt, "-tgt should be specified with -gold_align" @classmethod def validate_translate_opts_dynamic(cls, opt): # It comes from training # TODO: needs to be added as inference opt opt.share_vocab = False