""" Optimizers class """ import torch import torch.optim as optim from torch.nn.utils import clip_grad_norm_ import operator import functools from copy import copy from math import sqrt import types import os import importlib from onmt.utils.misc import fn_args try: import apex except ImportError: pass def build_torch_optimizer(model, opt): """Builds the PyTorch optimizer. We use the default parameters for Adam that are suggested by the original paper https://arxiv.org/pdf/1412.6980.pdf These values are also used by other established implementations, e.g. https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer https://keras.io/optimizers/ Recently there are slightly different values used in the paper "Attention is all you need" https://arxiv.org/pdf/1706.03762.pdf, particularly the value beta2=0.98 was used there however, beta2=0.999 is still arguably the more established value, so we use that here as well Args: model: The model to optimize. opt. The dictionary of options. Returns: A ``torch.optim.Optimizer`` instance. """ params = [p for p in model.parameters() if p.requires_grad] betas = [opt.adam_beta1, opt.adam_beta2] if opt.optim == "sgd": optimizer = optim.SGD(params, lr=opt.learning_rate) elif opt.optim == "adagrad": optimizer = optim.Adagrad( params, lr=opt.learning_rate, initial_accumulator_value=opt.adagrad_accumulator_init, ) elif opt.optim == "adadelta": optimizer = optim.Adadelta(params, lr=opt.learning_rate) elif opt.optim == "adafactor": optimizer = AdaFactor( params, non_constant_decay=True, enable_factorization=True, weight_decay=0 ) elif opt.optim == "adam": optimizer = optim.Adam(params, lr=opt.learning_rate, betas=betas, eps=1e-8) elif opt.optim == "sparseadam": dense = [] sparse = [] for name, param in model.named_parameters(): if not param.requires_grad: continue # TODO: Find a better way to check for sparse gradients. if "embed" in name: sparse.append(param) else: dense.append(param) optimizer = MultipleOptimizer( [ optim.Adam(dense, lr=opt.learning_rate, betas=betas, eps=1e-8), optim.SparseAdam(sparse, lr=opt.learning_rate, betas=betas, eps=1e-8), ] ) elif opt.optim == "fusedadam": optimizer = FusedAdam(params, lr=opt.learning_rate, betas=betas) try: import apex except ImportError: raise ImportError("Could not import apex") if opt.apex_opt_level in ["O0", "O1", "O2", "O3"]: # we use apex.amp loss_scale = "dynamic" if opt.loss_scale == 0 else opt.loss_scale model, optimizer = apex.amp.initialize( [model, model.generator], optimizer, opt_level=opt.apex_opt_level, loss_scale=loss_scale, keep_batchnorm_fp32=None, ) else: if opt.model_dtype == "fp16": # In this case use the old FusedAdam with # FP16_optimizer wrapper static_loss_scale = opt.loss_scale dynamic_loss_scale = opt.loss_scale == 0 optimizer = apex.contrib.optimizers.FP16_Optimizer( optimizer, static_loss_scale=static_loss_scale, dynamic_loss_scale=dynamic_loss_scale, ) elif opt.optim in ["adamw8bit", "pagedadamw8bit", "pagedadamw32bit"]: try: os.environ["BITSANDBYTES_NOWELCOME"] = "1" import bitsandbytes as bnb except ImportError: raise ImportError("Install bitsandbytes to use bnb optimizers") if opt.optim == "adamw8bit": optimizer = bnb.optim.AdamW8bit( params, lr=opt.learning_rate, betas=betas, eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=8, args=None, min_8bit_size=1024, percentile_clipping=100, block_wise=True, is_paged=False, ) elif opt.optim == "pagedadamw8bit": optimizer = bnb.optim.PagedAdamW8bit( params, lr=opt.learning_rate, betas=betas, eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=8, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, ) elif opt.optim == "pagedadamw32bit": optimizer = bnb.optim.PagedAdamW32bit( params, lr=opt.learning_rate, betas=betas, eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, ) else: raise ValueError("Invalid optimizer type: " + opt.optim) else: raise ValueError("Invalid optimizer type: " + opt.optim) return optimizer def make_learning_rate_decay_fn(opt): """Returns the learning decay function from options.""" if opt.decay_method == "noam": return functools.partial( noam_decay, warmup_steps=opt.warmup_steps, model_size=opt.hidden_size ) elif opt.decay_method == "noamwd": return functools.partial( noamwd_decay, warmup_steps=opt.warmup_steps, model_size=opt.hidden_size, rate=opt.learning_rate_decay, decay_steps=opt.decay_steps, start_step=opt.start_decay_steps, ) elif opt.decay_method == "rsqrt": return functools.partial(rsqrt_decay, warmup_steps=opt.warmup_steps) elif opt.start_decay_steps is not None: return functools.partial( exponential_decay, rate=opt.learning_rate_decay, decay_steps=opt.decay_steps, start_step=opt.start_decay_steps, ) def noam_decay(step, warmup_steps, model_size): """Learning rate schedule described in https://arxiv.org/pdf/1706.03762.pdf. """ return model_size ** (-0.5) * min(step ** (-0.5), step * warmup_steps ** (-1.5)) def noamwd_decay(step, warmup_steps, model_size, rate, decay_steps, start_step=0): """Learning rate schedule optimized for huge batches""" return ( model_size ** (-0.5) * min(step ** (-0.5), step * warmup_steps ** (-1.5)) * rate ** (max(step - start_step + decay_steps, 0) // decay_steps) ) def exponential_decay(step, rate, decay_steps, start_step=0): """A standard exponential decay, scaling the learning rate by :obj:`rate` every :obj:`decay_steps` steps. """ return rate ** (max(step - start_step + decay_steps, 0) // decay_steps) def rsqrt_decay(step, warmup_steps): """Decay based on the reciprocal of the step square root.""" return 1.0 / sqrt(max(step, warmup_steps)) class MultipleOptimizer(object): """Implement multiple optimizers needed for sparse adam""" def __init__(self, op): """?""" self.optimizers = op @property def param_groups(self): param_groups = [] for optimizer in self.optimizers: param_groups.extend(optimizer.param_groups) return param_groups def zero_grad(self, set_to_none=True): """?""" for op in self.optimizers: op.zero_grad(set_to_none) def step(self): """?""" for op in self.optimizers: op.step() @property def state(self): """?""" return {k: v for op in self.optimizers for k, v in op.state.items()} def state_dict(self): """?""" return [op.state_dict() for op in self.optimizers] def load_state_dict(self, state_dicts): """?""" assert len(state_dicts) == len(self.optimizers) for i in range(len(state_dicts)): self.optimizers[i].load_state_dict(state_dicts[i]) class Optimizer(object): """ Controller class for optimization. Mostly a thin wrapper for `optim`, but also useful for implementing rate scheduling beyond what is currently available. Also implements necessary methods for training RNNs such as grad manipulations. Args: optimizer: A ``torch.optim.Optimizer`` instance. learning_rate: The initial learning rate. learning_rate_decay_fn: An optional callable taking the current step as argument and return a learning rate scaling factor. max_grad_norm: Clip gradients to this global norm. """ def __init__( self, optimizer, learning_rate, learning_rate_decay_fn=None, max_grad_norm=None ): self._optimizer = optimizer self._learning_rate = learning_rate self._learning_rate_decay_fn = learning_rate_decay_fn self._max_grad_norm = max_grad_norm or 0 self._training_step = 1 self._decay_step = 1 self._fp16 = None self._scaler = None @classmethod def from_opt(cls, model, opt, checkpoint=None): """Builds the optimizer from options. Args: cls: The ``Optimizer`` class to instantiate. model: The model to optimize. opt: The dict of user options. checkpoint: An optional checkpoint to load states from. Returns: An ``Optimizer`` instance. """ optim_opt = opt optim_state_dict = None if opt.train_from and checkpoint is not None and "optim" in checkpoint.keys(): optim = checkpoint["optim"] ckpt_opt = checkpoint["opt"] ckpt_state_dict = {} if isinstance(optim, Optimizer): # Backward compatibility. ckpt_state_dict["training_step"] = optim._step + 1 ckpt_state_dict["decay_step"] = optim._step + 1 ckpt_state_dict["optimizer"] = optim.optimizer.state_dict() else: ckpt_state_dict = optim if opt.reset_optim == "none": # Load everything from the checkpoint. optim_opt = ckpt_opt optim_state_dict = ckpt_state_dict elif opt.reset_optim == "all": # Build everything from scratch. pass elif opt.reset_optim == "states": # Reset optimizer, keep options. optim_opt = ckpt_opt optim_state_dict = ckpt_state_dict del optim_state_dict["optimizer"] elif opt.reset_optim == "keep_states": # Reset options, keep optimizer. optim_state_dict = ckpt_state_dict optimizer = cls( build_torch_optimizer(model, optim_opt), optim_opt.learning_rate, learning_rate_decay_fn=make_learning_rate_decay_fn(optim_opt), max_grad_norm=optim_opt.max_grad_norm, ) if opt.model_dtype == "fp16": if opt.optim == "fusedadam": if opt.apex_opt_level in ["O0", "O1", "O2", "O3"]: optimizer._fp16 = "apex.amp" else: optimizer._fp16 = "legacy" else: optimizer._fp16 = "amp" from torch.cuda.amp import GradScaler optimizer._scaler = GradScaler() if optim_state_dict: optimizer.load_state_dict(optim_state_dict) return optimizer @property def training_step(self): """The current training step.""" return self._training_step @property def amp(self): """True if use torch amp mix precision training.""" return self._fp16 == "amp" def learning_rate(self): """Returns the current learning rate.""" if self._learning_rate_decay_fn is None: return self._learning_rate scale = self._learning_rate_decay_fn(self._decay_step) return scale * self._learning_rate def state_dict(self): return { "training_step": self._training_step, "decay_step": self._decay_step, "optimizer": self._optimizer.state_dict(), } def load_state_dict(self, state_dict): self._training_step = state_dict["training_step"] # State can be partially restored. if "decay_step" in state_dict: self._decay_step = state_dict["decay_step"] if "optimizer" in state_dict: self._optimizer.load_state_dict(state_dict["optimizer"]) def zero_grad(self, set_to_none=True): """Zero the gradients of optimized parameters.""" self._optimizer.zero_grad() # should be: self._optimizer.zero_grad(set_to_none) # but apex.amp is not up-to-date: # https://github.com/NVIDIA/apex/blob/master/apex/amp/_process_optimizer.py#L367 def backward(self, loss): """Wrapper for backward pass. Some optimizer requires ownership of the backward pass.""" if self._fp16 == "legacy": kwargs = {} if "update_master_grads" in fn_args(self._optimizer.backward): kwargs["update_master_grads"] = True self._optimizer.backward(loss, **kwargs) elif self.amp: self._scaler.scale(loss).backward() elif self._fp16 == "apex.amp": with apex.amp.scale_loss(loss, self._optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() def step(self): """Update the model parameters based on current gradients. Optionally, will employ gradient modification or update learning rate. """ learning_rate = self.learning_rate() if self.amp: self._scaler.unscale_(self._optimizer) elif self._fp16 == "legacy": if hasattr(self._optimizer, "update_master_grads"): self._optimizer.update_master_grads() if ( hasattr(self._optimizer, "clip_master_grads") and self._max_grad_norm > 0 ): self._optimizer.clip_master_grads(self._max_grad_norm) for group in self._optimizer.param_groups: group["lr"] = learning_rate if self._max_grad_norm > 0 and self._fp16 != "legacy": clip_grad_norm_(group["params"], self._max_grad_norm) if self.amp: # unscaled optimizer's gradients (already done therefore skip), # skips optimizer.step() if gradients contain infs/NaNs. self._scaler.step(self._optimizer) # Updates the scale for next iteration. self._scaler.update() else: self._optimizer.step() self._decay_step += 1 self._training_step += 1 # Code below is an implementation of https://arxiv.org/pdf/1804.04235.pdf # inspired but modified from https://github.com/DeadAt0m/adafactor-pytorch class AdaFactor(torch.optim.Optimizer): def __init__( self, params, lr=None, beta1=0.9, beta2=0.999, eps1=1e-30, eps2=1e-3, cliping_threshold=1, non_constant_decay=True, enable_factorization=True, ams_grad=True, weight_decay=0, ): enable_momentum = beta1 != 0 if non_constant_decay: ams_grad = False defaults = dict( lr=lr, beta1=beta1, beta2=beta2, eps1=eps1, eps2=eps2, cliping_threshold=cliping_threshold, weight_decay=weight_decay, ams_grad=ams_grad, enable_factorization=enable_factorization, enable_momentum=enable_momentum, non_constant_decay=non_constant_decay, ) super(AdaFactor, self).__init__(params, defaults) def __setstate__(self, state): super(AdaFactor, self).__setstate__(state) def _experimental_reshape(self, shape): temp_shape = shape[2:] if len(temp_shape) == 1: new_shape = (shape[0], shape[1] * shape[2]) else: tmp_div = len(temp_shape) // 2 + len(temp_shape) % 2 new_shape = ( shape[0] * functools.reduce(operator.mul, temp_shape[tmp_div:], 1), shape[1] * functools.reduce(operator.mul, temp_shape[:tmp_div], 1), ) return new_shape, copy(shape) def _check_shape(self, shape): """ output1 - True - algorithm for matrix, False - vector; output2 - need reshape """ if len(shape) > 2: return True, True elif len(shape) == 2: return True, False elif len(shape) == 2 and (shape[0] == 1 or shape[1] == 1): return False, False else: return False, False def _rms(self, x): return sqrt(torch.mean(x.pow(2))) def step(self, closure=None): loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group["params"]: if p.grad is None: continue grad = p.grad.data if grad.is_sparse: raise RuntimeError( "Adam does not support sparse \ gradients, use SparseAdam instead" ) is_matrix, is_need_reshape = self._check_shape(grad.size()) new_shape = p.data.size() if is_need_reshape and group["enable_factorization"]: new_shape, old_shape = self._experimental_reshape(p.data.size()) grad = grad.view(new_shape) state = self.state[p] if len(state) == 0: state["step"] = 0 if group["enable_momentum"]: state["exp_avg"] = torch.zeros( new_shape, dtype=torch.float32, device=p.grad.device ) if is_matrix and group["enable_factorization"]: state["exp_avg_sq_R"] = torch.zeros( (1, new_shape[1]), dtype=torch.float32, device=p.grad.device ) state["exp_avg_sq_C"] = torch.zeros( (new_shape[0], 1), dtype=torch.float32, device=p.grad.device ) else: state["exp_avg_sq"] = torch.zeros( new_shape, dtype=torch.float32, device=p.grad.device ) if group["ams_grad"]: state["exp_avg_sq_hat"] = torch.zeros( new_shape, dtype=torch.float32, device=p.grad.device ) if group["enable_momentum"]: exp_avg = state["exp_avg"] if is_matrix and group["enable_factorization"]: exp_avg_sq_r = state["exp_avg_sq_R"] exp_avg_sq_c = state["exp_avg_sq_C"] else: exp_avg_sq = state["exp_avg_sq"] if group["ams_grad"]: exp_avg_sq_hat = state["exp_avg_sq_hat"] state["step"] += 1 lr_t = group["lr"] lr_t *= max(group["eps2"], self._rms(p.data)) if group["enable_momentum"]: if group["non_constant_decay"]: beta1_t = ( group["beta1"] * (1 - group["beta1"] ** (state["step"] - 1)) / (1 - group["beta1"] ** state["step"]) ) else: beta1_t = group["beta1"] exp_avg.mul_(beta1_t).add_(1 - beta1_t, grad) if group["non_constant_decay"]: beta2_t = ( group["beta2"] * (1 - group["beta2"] ** (state["step"] - 1)) / (1 - group["beta2"] ** state["step"]) ) else: beta2_t = group["beta2"] if is_matrix and group["enable_factorization"]: exp_avg_sq_r.mul_(beta2_t).add_( 1 - beta2_t, torch.sum( torch.mul(grad, grad).add_(group["eps1"]), dim=0, keepdim=True, ), ) exp_avg_sq_c.mul_(beta2_t).add_( 1 - beta2_t, torch.sum( torch.mul(grad, grad).add_(group["eps1"]), dim=1, keepdim=True, ), ) v = torch.mul(exp_avg_sq_c, exp_avg_sq_r).div_( torch.sum(exp_avg_sq_r) ) else: exp_avg_sq.mul_(beta2_t).addcmul_(1 - beta2_t, grad, grad).add_( (1 - beta2_t) * group["eps1"] ) v = exp_avg_sq g = grad if group["enable_momentum"]: g = torch.div(exp_avg, 1 - beta1_t ** state["step"]) if group["ams_grad"]: torch.max(exp_avg_sq_hat, v, out=exp_avg_sq_hat) v = exp_avg_sq_hat u = torch.div( g, (torch.div(v, 1 - beta2_t ** state["step"])) .sqrt() .add_(group["eps1"]), ) else: u = torch.div(g, v.sqrt()) u.div_(max(1, self._rms(u) / group["cliping_threshold"])) p.data.add_( -lr_t * ( u.view(old_shape) if is_need_reshape and group["enable_factorization"] else u ) ) if group["weight_decay"] != 0: p.data.add_(-group["weight_decay"] * lr_t, p.data) return loss class FusedAdam(torch.optim.Optimizer): """Implements Adam algorithm. Currently GPU-only. Requires Apex to be installed via ``python setup.py install --cuda_ext --cpp_ext``. Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups. lr (float, optional): learning rate. (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square. (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability. (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) amsgrad (boolean, optional): whether to use the AMSGrad variant of this algorithm from the paper 'On the Convergence of Adam and Beyond' (default: False) NOT SUPPORTED in FusedAdam! eps_inside_sqrt (boolean, optional): in the 'update parameters' step, adds eps to the bias-corrected second moment estimate before evaluating square root instead of adding it to the square root of second moment estimate as in the original paper. (default: False) """ def __init__( self, params, lr=1e-3, bias_correction=True, betas=(0.9, 0.999), eps=1e-8, eps_inside_sqrt=False, weight_decay=0.0, max_grad_norm=0.0, amsgrad=False, ): global fused_adam_cuda fused_adam_cuda = importlib.import_module("fused_adam_cuda") if amsgrad: raise RuntimeError("AMSGrad variant not supported.") defaults = dict( lr=lr, bias_correction=bias_correction, betas=betas, eps=eps, weight_decay=weight_decay, max_grad_norm=max_grad_norm, ) super(FusedAdam, self).__init__(params, defaults) self.eps_mode = 0 if eps_inside_sqrt else 1 def step( self, closure=None, grads=None, output_params=None, scale=1.0, grad_norms=None ): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. grads (list of tensors, optional): weight gradient to use for the optimizer update. If gradients have type torch.half, parameters are expected to be in type torch.float. (default: None) output params (list of tensors, optional): A reduced precision copy of the updated weights written out in addition to the regular updated weights. Have to be of same type as gradients. (default: None) scale (float, optional): factor to divide gradient tensor values by before applying to weights. (default: 1) """ loss = None if closure is not None: loss = closure() if grads is None: grads_group = [None] * len(self.param_groups) # backward compatibility # assuming a list/generator of parameter means single group elif isinstance(grads, types.GeneratorType): grads_group = [grads] elif type(grads[0]) != list: grads_group = [grads] else: grads_group = grads if output_params is None: output_params_group = [None] * len(self.param_groups) elif isinstance(output_params, types.GeneratorType): output_params_group = [output_params] elif type(output_params[0]) != list: output_params_group = [output_params] else: output_params_group = output_params if grad_norms is None: grad_norms = [None] * len(self.param_groups) for group, grads_this_group, output_params_this_group, grad_norm in zip( self.param_groups, grads_group, output_params_group, grad_norms ): if grads_this_group is None: grads_this_group = [None] * len(group["params"]) if output_params_this_group is None: output_params_this_group = [None] * len(group["params"]) # compute combined scale factor for this group combined_scale = scale if group["max_grad_norm"] > 0: # norm is in fact norm*scale clip = ((grad_norm / scale) + 1e-6) / group["max_grad_norm"] if clip > 1: combined_scale = clip * scale bias_correction = 1 if group["bias_correction"] else 0 for p, grad, output_param in zip( group["params"], grads_this_group, output_params_this_group ): # note: p.grad should not ever be set for correct operation of # mixed precision optimizer that sometimes sends None gradients if p.grad is None and grad is None: continue if grad is None: grad = p.grad.data if grad.is_sparse: raise RuntimeError( "FusedAdam does not support sparse \ gradients, please consider \ SparseAdam instead" ) state = self.state[p] # State initialization if len(state) == 0: state["step"] = 0 # Exponential moving average of gradient values state["exp_avg"] = torch.zeros_like(p.data) # Exponential moving average of squared gradient values state["exp_avg_sq"] = torch.zeros_like(p.data) exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"] beta1, beta2 = group["betas"] state["step"] += 1 out_p = ( torch.tensor([], dtype=torch.float) if output_param is None else output_param ) fused_adam_cuda.adam( p.data, out_p, exp_avg, exp_avg_sq, grad, group["lr"], beta1, beta2, group["eps"], combined_scale, state["step"], self.eps_mode, bias_correction, group["weight_decay"], ) return loss