""" This includes: LossComputeBase and the standard NMTLossCompute, and sharded loss compute stuff. """ import torch import torch.nn as nn import torch.nn.functional as F import onmt from onmt.modules.sparse_losses import SparsemaxLoss from onmt.modules.sparse_activations import LogSparsemax from onmt.constants import ModelTask, DefaultTokens from onmt.modules.copy_generator import collapse_copy_scores from onmt.model_builder import load_test_model try: import ctranslate2 except ImportError: pass # this is tested when importing for loading a LM class LossCompute(nn.Module): """ Class for managing efficient loss computation. Handles accumulating multiple loss computations. Args: criterion (:obj:`nn. loss function`) : NLLoss or customed loss generator (:obj:`nn.Module`) : copy_attn (bool): whether copy attention mechanism is on/off lambda_coverage: Hyper-param to apply coverage attention if any lambda_align: Hyper-param for alignment loss tgt_shift_index (int): 1 for NMT, 0 for LM vocab: target vocab (for copy attention score calculation) module that maps the output of the decoder to a distribution over the target vocabulary. lm_generator (:obj:`ctranslate2.Generator`): LM Generator lm_prior_lambda (float): weight of LM model in loss lm_prior_tau (float): scaler for LM loss """ def __init__( self, criterion, generator, copy_attn=False, lambda_coverage=0.0, lambda_align=0.0, tgt_shift_index=1, vocab=None, lm_generator=None, lm_prior_lambda=None, lm_prior_tau=None, lm_prior_model=None, ): super(LossCompute, self).__init__() self.criterion = criterion self.generator = generator self.lambda_coverage = lambda_coverage self.lambda_align = lambda_align self.tgt_shift_index = tgt_shift_index self.copy_attn = copy_attn self.vocab = vocab # target vocab for copy_attn need self.lm_generator = lm_generator self.lm_prior_lambda = lm_prior_lambda self.lm_prior_tau = lm_prior_tau self.lm_prior_model = lm_prior_model @classmethod def from_opts(cls, opt, model, vocab, train=True): """ Returns a subclass which wraps around an nn.Module subclass (such as nn.NLLLoss) which defines the loss criterion. The LossCompute object passes relevant data to a Statistics object which handles training/validation logging. The Criterion and LossCompute options are triggered by opt settings. """ device = torch.device("cuda" if onmt.utils.misc.use_gpu(opt) else "cpu") padding_idx = vocab[DefaultTokens.PAD] unk_idx = vocab[DefaultTokens.UNK] if opt.lambda_coverage != 0: assert opt.coverage_attn, ( "--coverage_attn needs to be set in " "order to use --lambda_coverage != 0" ) tgt_shift_idx = 1 if opt.model_task == ModelTask.SEQ2SEQ else 0 if opt.copy_attn: criterion = onmt.modules.CopyGeneratorLoss( len(vocab), opt.copy_attn_force, unk_index=unk_idx, ignore_index=padding_idx, ) else: if opt.generator_function == "sparsemax": criterion = SparsemaxLoss(ignore_index=padding_idx, reduction="sum") else: criterion = nn.CrossEntropyLoss( ignore_index=padding_idx, reduction="sum", label_smoothing=opt.label_smoothing, ) lm_prior_lambda = opt.lm_prior_lambda lm_prior_tau = opt.lm_prior_tau if opt.lm_prior_model: if opt.lm_prior_model[-3:] == ".pt": opt.gpu = 0 opt.fp32 = False opt.int8 = False _, lm_prior_model, lm_model_opt = load_test_model( opt, model_path=opt.lm_prior_model ) lm_prior_model.to(torch.device("cuda", opt.gpu)) lm_prior_model.eval() lm_generator = None else: lm_prior_model = None try: import ctranslate2 lm_generator = ctranslate2.Generator( opt.lm_prior_model, device="cuda", compute_type="float16" ) except ImportError: raise ImportError("Could not import ctranslate2") else: lm_generator = None lm_prior_model = None compute = cls( criterion, model.generator, copy_attn=opt.copy_attn, lambda_coverage=opt.lambda_coverage, lambda_align=opt.lambda_align, tgt_shift_index=tgt_shift_idx, vocab=vocab, lm_generator=lm_generator, lm_prior_lambda=lm_prior_lambda, lm_prior_tau=lm_prior_tau, lm_prior_model=lm_prior_model, ) compute.to(device) return compute @property def padding_idx(self): return self.criterion.ignore_index def _compute_coverage_loss(self, std_attn, cov_attn, tgt): """compute coverage loss""" zero_attn = torch.zeros(cov_attn.size()[1:], device=cov_attn.device) cov_attn = torch.cat((zero_attn.unsqueeze(0), cov_attn[:-1]), 0) covloss = torch.min(std_attn, cov_attn).sum(dim=-1).view(-1) covloss[tgt == self.padding_idx] = 0 return covloss.sum() def _compute_alignement_loss(self, align_head, ref_align): """Compute loss between 2 partial alignment matrix.""" # align_head contains value in [0, 1) presenting attn prob, # 0 was resulted by the context attention src_pad_mask # So, the correspand position in ref_align should also be 0 # Therefore, clip align_head to > 1e-18 should be bias free. align_loss = -align_head.clamp(min=1e-18).log().mul(ref_align).sum() align_loss *= self.lambda_align return align_loss def _compute_copy_loss(self, batch, output, target, align, attns): """Compute the copy attention loss. Args: batch: the current batch. output: the predict output from the model. target: the validate target to compare output with. align: attns: dictionary of attention distributions `(tgt_len, batch, src_len)` Returns: A tuple with the loss and raw scores. """ scores = self.generator( self._bottle(output), self._bottle(attns["copy"]), batch["src_map"] ) loss = self.criterion(scores, align, target).sum() return loss, scores def _compute_lm_loss_ct2(self, output, target): """ Compute the loss between MT output and LM output https://github.com/cbaziotis/lm-prior-for-nmt/blob/master /fairseq_extension/user/lm_prior/lm_prior.py#L131-L133 """ # rescale with tau (temperature) and apply the log_softmax. scores = self.generator(self._bottle(output)) / self.lm_prior_tau scores = F.log_softmax(scores.to(torch.float32), dim=-1) src = target.detach().clone() src[src == self.vocab[DefaultTokens.EOS]] = self.padding_idx src = src[:, :-1, :] src_len = src[:, :, 0].ne(self.padding_idx).sum(1) # ct2 expects src with lengths without padding lm_scores = self.lm_generator.forward_batch( ctranslate2.StorageView.from_array(src[:, :, 0].to(torch.int32)), ctranslate2.StorageView.from_array(src_len.to(torch.int32)), return_log_probs=False, ) lm_scores = torch.as_tensor(lm_scores, device=scores.device) # again we use raw probs to rescale with tau and apply log_softmax lm_scores = self._bottle(lm_scores) / self.lm_prior_tau lm_scores = F.log_softmax(lm_scores.to(torch.float32), dim=-1) lm_scores[:, self.vocab[DefaultTokens.UNK]] = -50 lm_scores[:, self.vocab[DefaultTokens.EOS]] -= 20 # lm_scores are in log space so log_target=True lm_loss = F.kl_div(scores, lm_scores, reduction="none", log_target=True).sum(-1) non_padding = self._bottle(output).ne(self.padding_idx)[:, 0] lm_loss = lm_loss.masked_select(non_padding).sum() lm_loss = lm_loss * (self.lm_prior_tau**2) return lm_loss def _compute_lm_loss(self, output, target): """ Compute the loss between MT output and LM output https://github.com/cbaziotis/lm-prior-for-nmt/blob/master /fairseq_extension/user/lm_prior/lm_prior.py#L131-L133 """ # rescale with tau (temperature) and apply the log_softmax. scores = self.generator(self._bottle(output)) / self.lm_prior_tau scores = F.log_softmax(scores.to(torch.float32), dim=-1) src = target.detach().clone() src[src == self.vocab[DefaultTokens.EOS]] = self.padding_idx src = src[:, :-1, :] src_len = src[:, :, 0].ne(self.padding_idx).sum(1) # ct2 expects src with lengths without padding lm_outs, _ = self.lm_prior_model(src, None, src_len, with_align=False) lm_scores = ( self.lm_prior_model.generator(self._bottle(lm_outs)).detach().clone() / self.lm_prior_tau ) # again we use raw probs to rescale with tau and apply log_softmax lm_scores = F.log_softmax(lm_scores.to(torch.float32), dim=-1) lm_scores[:, self.vocab[DefaultTokens.UNK]] = -50 lm_scores[:, self.vocab[DefaultTokens.EOS]] -= 20 # lm_scores are in log space so log_target=True lm_loss = F.kl_div(scores, lm_scores, reduction="none", log_target=True).sum(-1) non_padding = self._bottle(output).ne(self.padding_idx)[:, 0] lm_loss = lm_loss.masked_select(non_padding).sum() lm_loss = lm_loss * (self.lm_prior_tau**2) return lm_loss def _bottle(self, _v): return _v.view(-1, _v.size(2)) def _unbottle(self, _v, batch_size): return _v.view(-1, batch_size, _v.size(1)) def ignore_prompt(self, batch): """ Mask the prompt in the target side of the batch examples in order to set the loss of the prompt to zero. For finetuning on specific tasks. The end of the prompt must be indicated by `the DefaultTokens.MASK_BEFORE` placeholder. The masks are supposed to be properly handled by the loss criterion (e.g. nn.CrossEntropyLoss ). Args: batch: The current batch. """ # Create a mask with zeros at prompt positions and ones at answer postions. mask = batch["src"].squeeze(dim=2) == self.padding_idx mask = torch.cumsum(mask.int(), 1) mask = mask.unsqueeze(-1) # Apply the mask on the target side. batch["tgt"] *= mask.int() # Put the padding token index at the prompt positions. batch["tgt"] += self.padding_idx * (1 - mask.int()) return batch def forward(self, batch, output, attns, trunc_start=0, trunc_size=None): """Compute the forward loss, supports truncated BPTT for long sequences by taking a range in the decoder output sequence to back propagate in. Range is from `(trunc_start, trunc_start + trunc_size)`. Truncation is an approximate efficiency trick to relieve the memory required in the RNN buffers. Args: batch (batch) : batch of labeled examples output (:obj:`FloatTensor`) : output of decoder model ``(batch, tgt_len, hidden)`` attns (dict) : dictionary of attention weights ``(batch, tgt_len, src_len)`` trunc_start (int) : starting position of truncation window trunc_size (int) : length of truncation window Returns: A tuple with the loss and a :obj:`onmt.utils.Statistics` instance. """ if trunc_size is None: trunc_size = batch["tgt"].size(1) - trunc_start # take into account here the tgt_shift_index (0 / 1 = LM/NMT) trunc_range = (trunc_start + self.tgt_shift_index, trunc_start + trunc_size) target = batch["tgt"][:, trunc_range[0] : trunc_range[1], :] output = output[:, trunc_start : trunc_range[1], :].contiguous() flat_tgt = target[:, :, 0].contiguous().view(-1) if self.copy_attn: align = ( batch["alignment"][:, trunc_range[0] : trunc_range[1]] .contiguous() .view(-1) ) loss, scores = self._compute_copy_loss( batch, output, flat_tgt, align, attns ) scores_data = collapse_copy_scores( self._unbottle(scores.clone(), len(batch["srclen"])), batch, self.vocab, None, ) scores_data = self._bottle(scores_data) # Correct target copy token instead of # tgt[i] = align[i] + len(tgt_vocab) # for i such that tgt[i] == 0 and align[i] != 0 target_data = flat_tgt.clone() unk = self.criterion.unk_index correct_mask = (target_data == unk) & (align != unk) offset_align = align[correct_mask] + len(self.vocab) target_data[correct_mask] += offset_align scores = scores_data flat_tgt = target_data else: scores = self.generator(self._bottle(output)) if isinstance(self.criterion, SparsemaxLoss): scores = LogSparsemax(scores.to(torch.float32), dim=-1) loss = self.criterion(scores.to(torch.float32), flat_tgt) if self.lambda_align != 0.0: align_head = attns["align"] if align_head.dtype != loss.dtype: # Fix FP16 align_head = align_head.to(loss.dtype) align_idx = batch["align"] batch_size, pad_tgt_size, _ = batch["tgt"].size() _, pad_src_size, _ = batch["src"].size() align_matrix_size = [batch_size, pad_tgt_size, pad_src_size] ref_align = onmt.utils.make_batch_align_matrix( align_idx, align_matrix_size, normalize=True ) ref_align = ref_align[:, trunc_range[0] : trunc_range[1], :] if ref_align.dtype != loss.dtype: ref_align = ref_align.to(loss.dtype) align_loss = self._compute_alignement_loss( align_head=align_head, ref_align=ref_align ) loss += align_loss if self.lambda_coverage != 0.0: coverage_loss = self._compute_coverage_loss( attns["std"], attns["coverage"], flat_tgt ) loss += coverage_loss if self.lm_generator is not None: lm_loss = self._compute_lm_loss_ct2(output, batch["tgt"]) loss = loss + lm_loss * self.lm_prior_lambda if self.lm_prior_model is not None: lm_loss = self._compute_lm_loss(output, batch["tgt"]) loss = loss + lm_loss * self.lm_prior_lambda n_sents = len(batch["srclen"]) if trunc_start == 0 else 0 stats = self._stats(n_sents, loss.sum().item(), scores, flat_tgt) return loss, stats def _stats(self, bsz, loss, scores, target): """ Args: loss (int): the loss computed by the loss criterion. scores (:obj:`FloatTensor`): a score for each possible output target (:obj:`FloatTensor`): true targets Returns: :obj:`onmt.utils.Statistics` : statistics for this batch. """ pred = scores.max(1)[1] non_padding = target.ne(self.padding_idx) num_correct = pred.eq(target).masked_select(non_padding).sum().item() num_non_padding = non_padding.sum().item() n_batchs = 1 if bsz else 0 # in the case criterion reduction is None then we need # to sum the loss of each sentence in the batch return onmt.utils.Statistics( loss=loss, n_batchs=n_batchs, n_sents=bsz, n_words=num_non_padding, n_correct=num_correct, )