"""Base Transform class and relate utils.""" import torch from onmt.utils.logging import logger from onmt.utils.misc import check_path class Transform(object): """A Base class that every transform method should derived from.""" def __init__(self, opts): """Initialize Transform by parsing `opts` and add them as attribute.""" self.opts = opts self._parse_opts() def _set_seed(self, seed): """Reproducibility: Set seed for non-deterministic transform.""" pass @classmethod def require_vocab(cls): """Override this method to inform it need vocab to start.""" return False def warm_up(self, vocabs=None): """Procedure needed after initialize and before apply. This should be override if there exist any procedure necessary before `apply`, like setups based on parsed options or load models, etc. """ if self.opts.seed > 0: self._set_seed(self.opts.seed) if self.require_vocab(): if vocabs is None: raise ValueError(f"{type(self).__name__} requires vocabs!") self.vocabs = vocabs @classmethod def add_options(cls, parser): """Available options relate to this Transform.""" pass @classmethod def _validate_options(cls, opts): """Extra checks to validate options added from `add_options`.""" pass @classmethod def get_specials(cls, opts): return ([], []) def apply(self, example, is_train=False, stats=None, **kwargs): """Apply transform to `example`. Args: example (dict): a dict of field value, ex. src, tgt; is_train (bool): Indicate if src/tgt is training data; stats (TransformStatistics): a statistic object. """ raise NotImplementedError def batch_apply(self, batch, is_train=False, **kwargs): """Apply transform to `batch`. Args: batch (list): a list of examples; is_train (bool): Indicate if src/tgt is training data;bject. """ transformed_batch = [] for example, _, cid in batch: example = self.apply(example, is_train=is_train, **kwargs) if example is not None: transformed_batch.append((example, self, cid)) return transformed_batch def apply_reverse(self, translated): return translated def batch_apply_reverse(self, translated_batch, **kwargs): transformed_batch = [] for translated in translated_batch: reversed = self.apply_reverse(translated, **kwargs) if isinstance(reversed, list): transformed_batch += reversed elif reversed is not None: transformed_batch.append(reversed) return transformed_batch def __getstate__(self): """Pickling following for rebuild.""" state = {"opts": self.opts} if hasattr(self, "vocabs"): state["vocabs"] = self.vocabs return state def _parse_opts(self): """Parse opts to set/reset instance's attributes. This should be override if there are attributes other than self.opts. To make sure we recover from picked state. (This should only contain attribute assignment, other routine is suggest to define in `warm_up`.) """ pass def __setstate__(self, state): """Reload when unpickling from save file.""" self.opts = state["opts"] self._parse_opts() vocabs = state.get("vocabs", None) self.warm_up(vocabs=vocabs) def stats(self): """Return statistic message.""" return "" def _repr_args(self): """Return str represent key arguments for class.""" return "" def __repr__(self): cls_name = type(self).__name__ cls_args = self._repr_args() return "{}({})".format(cls_name, cls_args) class ObservableStats: """A running observable statistics.""" __slots__ = [] def name(self) -> str: """Return class name as name for statistics.""" return type(self).__name__ def update(self, other: "ObservableStats"): """Update current statistics with others.""" raise NotImplementedError def __str__(self) -> str: return "{}({})".format( self.name(), ", ".join(f"{name}={getattr(self, name)}" for name in self.__slots__), ) class TransformStatistics: """A observer containing runing statistics.""" def __init__(self): self.observables = {} def update(self, observable: ObservableStats): """Adding observable to observe/updating existing observable.""" name = observable.name() if name not in self.observables: self.observables[name] = observable else: self.observables[name].update(observable) def report(self): """Pop out all observing statistics and reporting them.""" msgs = [] report_ids = list(self.observables.keys()) for name in report_ids: observable = self.observables.pop(name) msgs.append(f"\t\t\t* {str(observable)}") if len(msgs) != 0: return "\n".join(msgs) else: return "" class TransformPipe(Transform): """Pipeline built by a list of Transform instance.""" def __init__(self, opts, transform_list): """Initialize pipeline by a list of transform instance.""" self.opts = None # opts is not required self.transforms = transform_list self.statistics = TransformStatistics() @classmethod def build_from(cls, transform_list): """Return a `TransformPipe` instance build from `transform_list`.""" for transform in transform_list: assert isinstance( transform, Transform ), "transform should be a instance of Transform." transform_pipe = cls(None, transform_list) return transform_pipe def warm_up(self, vocabs): """Warm up Pipeline by iterate over all transfroms.""" for transform in self.transforms: transform.warm_up(vocabs) @classmethod def get_specials(cls, opts, transforms): """Return all specials introduced by `transforms`.""" src_specials, tgt_specials = [], [] for transform in transforms: _src_special, _tgt_special = transform.get_specials(transform.opts) for _src_spec in _src_special: src_specials.append(_src_spec) for _tgt_spec in _tgt_special: tgt_specials.append(_tgt_spec) return (src_specials, tgt_specials) def apply(self, example, is_train=False, **kwargs): """Apply transform pipe to `example`. Args: example (dict): a dict of field value, ex. src, tgt. """ for transform in self.transforms: example = transform.apply( example, is_train=is_train, stats=self.statistics, **kwargs ) if example is None: break return example def batch_apply(self, batch, is_train=False, **kwargs): """Apply transform pipe to `example`. Args: example (dict): a dict of field value, ex. src, tgt. """ for transform in self.transforms: batch = transform.batch_apply( batch, is_train=is_train, stats=self.statistics, **kwargs ) if batch is None: break return batch def apply_reverse(self, translated): for transform in self.transforms: translated = transform.apply_reverse(translated) return translated def __getstate__(self): """Pickling following for rebuild.""" return (self.opts, self.transforms, self.statistics) def __setstate__(self, state): """Reload when unpickling from save file.""" self.opts, self.transforms, self.statistics = state def stats(self): """Return statistic message.""" return self.statistics.report() def _repr_args(self): """Return str represent key arguments for class.""" info_args = [] for transform in self.transforms: info_args.append(repr(transform)) return ", ".join(info_args) def make_transforms(opts, transforms_cls, vocabs): """Build transforms in `transforms_cls` with vocab of `fields`.""" transforms = {} for name, transform_cls in transforms_cls.items(): if transform_cls.require_vocab() and vocabs is None: logger.warning(f"{transform_cls.__name__} require vocab to apply, skip it.") continue transform_obj = transform_cls(opts) transform_obj.warm_up(vocabs) transforms[name] = transform_obj return transforms def get_specials(opts, transforms_cls_dict): """Get specials of transforms that should be registed in Vocab.""" all_specials = {"src": [], "tgt": []} for name, transform_cls in transforms_cls_dict.items(): src_specials, tgt_specials = transform_cls.get_specials(opts) for src_spec in src_specials: all_specials["src"].append(src_spec) for tgt_spec in tgt_specials: all_specials["tgt"].append(tgt_spec) logger.info(f"Get special vocabs from Transforms: {all_specials}.") return all_specials def save_transforms(transforms, save_data, overwrite=True): """Dump `transforms` object.""" transforms_path = "{}.transforms.pt".format(save_data) check_path(transforms_path, exist_ok=overwrite, log=logger.warning) logger.info(f"Saving Transforms to {transforms_path}.") torch.save(transforms, transforms_path) def load_transforms(opts): """Load dumped `transforms` object.""" transforms_path = "{}.transforms.pt".format(opts.save_data) transforms = torch.load(transforms_path) logger.info("Transforms loaded.") return transforms